Tensor Sparse Coding for Positive Definite Matrices

In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for e.g., image patches). However, this approach cannot be used for all matrices, as it may destroy the i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence
Hlavní autoři: Sivalingam, Ravishankar, Boley, Daniel, Morellas, Vassilios, Papanikolopoulos, Nikos
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 02.08.2013
ISSN:1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for e.g., image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1939-3539