High-order numerical methods and algorithms: Eigen-based spectral element approach

This thesis focuses on the construction of the eigen-based high-order expansion bases for spectral elements. In high-order approaches with spectral elements or p-finite elements, basis functions are very important. They are used to discretize the partial differential equations (approximate the solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zheng, Xiaoning
Format: Dissertation
Sprache:Englisch
Veröffentlicht: ProQuest Dissertations & Theses 01.01.2012
Schlagworte:
ISBN:126774703X, 9781267747037
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This thesis focuses on the construction of the eigen-based high-order expansion bases for spectral elements. In high-order approaches with spectral elements or p-finite elements, basis functions are very important. They are used to discretize the partial differential equations (approximate the solution functions). Different bases lead us to different system matrices in the final algebraic system of equations. The properties of these matrices in turn influence the number of iterations to covergence needed by iterative solvers. We want to find a set of basis functions that can lead us to system matrices with high numerical efficiency, which can be solved by as few number of iterations with iterative solvers as possible. Therefore, we can save computation time. We construct eigen-based bases from an existing basis for structured and unstructured elements. Then we construct macro eigen-based bases from the eigen-based bases. System matrices given by eigen-based bases exhibit superior numerical efficiency, which give us system matrices of low condition number, sparse matrix pattern, clustered distribution of eigenvalues compared with the existing bases. As we expected, the number of conjugate gradient iterations to convergence obtained with the eigen-based bases are fewer than those with the existing expansion bases. Numerical examples are provided to verify the assumptions and to demonstrate the improved performance of the eigen bases and macro eigen bases.
AbstractList This thesis focuses on the construction of the eigen-based high-order expansion bases for spectral elements. In high-order approaches with spectral elements or p-finite elements, basis functions are very important. They are used to discretize the partial differential equations (approximate the solution functions). Different bases lead us to different system matrices in the final algebraic system of equations. The properties of these matrices in turn influence the number of iterations to covergence needed by iterative solvers. We want to find a set of basis functions that can lead us to system matrices with high numerical efficiency, which can be solved by as few number of iterations with iterative solvers as possible. Therefore, we can save computation time. We construct eigen-based bases from an existing basis for structured and unstructured elements. Then we construct macro eigen-based bases from the eigen-based bases. System matrices given by eigen-based bases exhibit superior numerical efficiency, which give us system matrices of low condition number, sparse matrix pattern, clustered distribution of eigenvalues compared with the existing bases. As we expected, the number of conjugate gradient iterations to convergence obtained with the eigen-based bases are fewer than those with the existing expansion bases. Numerical examples are provided to verify the assumptions and to demonstrate the improved performance of the eigen bases and macro eigen bases.
Author Zheng, Xiaoning
Author_xml – sequence: 1
  givenname: Xiaoning
  surname: Zheng
  fullname: Zheng, Xiaoning
BookMark eNotjc1KxDAURgMq6IzzDgHXgZuknTTuZBgdYUCQWbgb8nPbRtqkJu37W9DV-RaH72zIbUwRb8iGi71SlQL5dU92pQQLAFpKqMQD-TyFrmcpe8w0LiPm4MxAR5z75As10VMzdCmHuR_LMz2GDiOzpqCnZUI351XGAUeMMzXTlJNx_SO5a81QcPfPLbm8Hi-HEzt_vL0fXs5sqiVn3FlbtVL6mvNGgFXaSdG0TtnWcI2IqtYGWvDKOmXA1rwC70WjOYp1eLklT3-3a_VnwTJfv9OS41q8ciHqptmDBPkL8hJORw
ContentType Dissertation
Copyright Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Copyright_xml – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
DBID 053
0BH
ABQRF
AFLLJ
AFOKG
ARAPS
BGLVJ
CBPLH
EU9
G20
HCIFZ
M8-
OK5
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DatabaseName Dissertations & Theses Europe Full Text: Science & Technology
ProQuest Dissertations and Theses Professional
Technology Collection - hybrid linking
SciTech Premium Collection - hybrid linking
Advanced Technologies & Aerospace Collection - hybrid linking
Advanced Technologies & Computer Science Collection
Technology collection
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations & Theses A&I
ProQuest Dissertations & Theses Global
SciTech Premium Collection
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
Dissertations & Theses @ Big Ten Academic Alliance
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations and Theses Professional
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest Dissertations & Theses Global
Dissertations & Theses Europe Full Text: Science & Technology
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Dissertations & Theses @ CIC Institutions
ProQuest Central (New)
ProQuest One Academic
ProQuest Dissertations & Theses A&I
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: G20
  name: ProQuest Dissertations & Theses Global
  url: https://www.proquest.com/pqdtglobal1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 2836833771
Genre Dissertation/Thesis
GroupedDBID 053
0BH
8R4
8R5
ARAPS
BGLVJ
CBPLH
EU9
G20
HCIFZ
M8-
OK5
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q2X
ID FETCH-LOGICAL-p531-1cbb4f33d511820b79c328fc7bfa19eee759a0f0d7bc7a0b5140dd2891e20ddd3
IEDL.DBID G20
ISBN 126774703X
9781267747037
IngestDate Mon Jun 30 17:54:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p531-1cbb4f33d511820b79c328fc7bfa19eee759a0f0d7bc7a0b5140dd2891e20ddd3
Notes SourceType-Dissertations & Theses-1
ObjectType-Dissertation/Thesis-1
content type line 12
PQID 1225886030
PQPubID 18750
ParticipantIDs proquest_journals_1225886030
PublicationCentury 2000
PublicationDate 20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 20120101
  day: 01
PublicationDecade 2010
PublicationYear 2012
Publisher ProQuest Dissertations & Theses
Publisher_xml – name: ProQuest Dissertations & Theses
SSID ssib000933042
Score 1.5829376
Snippet This thesis focuses on the construction of the eigen-based high-order expansion bases for spectral elements. In high-order approaches with spectral elements or...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Mathematics
Title High-order numerical methods and algorithms: Eigen-based spectral element approach
URI https://www.proquest.com/docview/1225886030
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYQAG3uJRkAdWi9hJapuFAVoxQIVQh26Vn4BU0tKk_H5sJy2VkFjYEiWKIvt8993rO4Ar4a0kz1yGncsdziShWHKVY0ONpKlQSW4jZf4j6_f5cCiem4Bb2ZRVLnRiVNRmokOM_Jp4weO842XydvqJw9SokF1tRmisw0boro3NvqvwZ-mtE9rxOMdLd0O6s7xnv3RwNCy93f_-0h7s3K9k1PdhzRYHsP20JGMtD-El1HLgyLGJinmdoRmjenR0iWRhkBy_-u9Wbx_lDeoGek4cjJtBsQ1z5l-2dZE5WjCQH8Gg1x3cPeBmlAKe-kOGiVYqc2lqoj-RKCZ0SrnTTDlJhLWW5UImLjFMaSYT5VFUYoz3xYil_sKkx9AqJoU9AZRmKXM286gq7LEmXFAihWPWccU0E6fQXizWqDkO5ehnpc7-fnwOWx6R0DrG0YZWNZvbC9jUX9V7ObuMu_sN7Iuvbg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQWI5sIsdH-BokTgJjpEQB9aqpUKoh94qO7YBqaTQtCA-in9knDSlEhK3HrglShTJmeeZN_b4DcChwCgZhzak1kaWhtJnVMYqopppyQKhvMjkkvl13mjErZa4n4Kv8iyMK6ssfWLuqHU3cWvkxz4CL45PEJPnr2_UdY1yu6tlC40CFjXz-YEpW3ZWvUT7HjF2fdW8uKXDrgL0FfFG_USp0AaBzqm1p7hIAhbbhCsrfWGM4ZGQnvU0VwmXnkJC4WmNaYlvGF7oAD87DTNhwD2X692Ms63R4oDPTpBW4WQaavyM7vkvl5_Hseulf_YHlmHxcqxeYAWmTLoKC3cjqdlsDR5cpQrNFURJOij2nzqkaIydEZlqIjuPOIz-00t2Sq6c-Ch1oVuT_JBpD182RQk9KfXV16E5iQFtQCXtpmYTSIB2tSZEzugQnPixYL4UlhsbK55wsQW7pW3aw8metX8Ms_334wOYu23e1dv1aqO2A_PIvVixmrMLlX5vYPZgNnnvP2e9_RxYBNoTNuM32ekM3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=High-order+numerical+methods+and+algorithms%3A+Eigen-based+spectral+element+approach&rft.DBID=053%3B0BH%3BABQRF%3BAFLLJ%3BAFOKG%3BARAPS%3BBGLVJ%3BCBPLH%3BEU9%3BG20%3BHCIFZ%3BM8-%3BOK5%3BPHGZM%3BPHGZT%3BPKEHL%3BPQEST%3BPQGLB%3BPQQKQ%3BPQUKI&rft.PQPubID=18750&rft.au=Zheng%2C+Xiaoning&rft.date=2012-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=126774703X&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2836833771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781267747037/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781267747037/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781267747037/sc.gif&client=summon&freeimage=true