Automated breast mass detection in 3D reconstructed tomosynthesis volumes: A featureless approach

The purpose of this study was to propose and implement a computer aided detection (CADe) tool for breast tomosynthesis. This task was accomplished in two stages—a highly sensitive mass detector followed by a false positive (FP) reduction stage. Breast tomosynthesis data from 100 human subject cases...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical physics (Lancaster) Ročník 35; číslo 8; s. 3626 - 3636
Hlavní autori: Singh, Swatee, Tourassi, Georgia D., Baker, Jay A., Samei, Ehsan, Lo, Joseph Y.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Association of Physicists in Medicine 01.08.2008
Predmet:
ISSN:0094-2405, 2473-4209, 0094-2405
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The purpose of this study was to propose and implement a computer aided detection (CADe) tool for breast tomosynthesis. This task was accomplished in two stages—a highly sensitive mass detector followed by a false positive (FP) reduction stage. Breast tomosynthesis data from 100 human subject cases were used, of which 25 subjects had one or more mass lesions and the rest were normal. For stage 1, filter parameters were optimized via a grid search. The CADe identified suspicious locations were reconstructed to yield 3D CADe volumes of interest. The first stage yielded a maximum sensitivity of 93% with 7.7 FPs/breast volume. Unlike traditional CADe algorithms in which the second stage FP reduction is done via feature extraction and analysis, instead information theory principles were used with mutual information as a similarity metric. Three schemes were proposed, all using leave-one-case-out cross validation sampling. The three schemes, A, B, and C, differed in the composition of their knowledge base of regions of interest (ROIs). Scheme A’s knowledge base was comprised of all the mass and FP ROIs generated by the first stage of the algorithm. Scheme B had a knowledge base that contained information from mass ROIs and randomly extracted normal ROIs. Scheme C had information from three sources of information—masses, FPs, and normal ROIs. Also, performance was assessed as a function of the composition of the knowledge base in terms of the number of FP or normal ROIs needed by the system to reach optimal performance. The results indicated that the knowledge base needed no more than 20 times as many FPs and 30 times as many normal ROIs as masses to attain maximal performance. The best overall system performance was 85% sensitivity with 2.4 FPs per breast volume for scheme A, 3.6 FPs per breast volume for scheme B, and 3 FPs per breast volume for scheme C.
AbstractList The purpose of this study was to propose and implement a computer aided detection (CADe) tool for breast tomosynthesis. This task was accomplished in two stages-a highly sensitive mass detector followed by a false positive (FP) reduction stage. Breast tomosynthesis data from 100 human subject cases were used, of which 25 subjects had one or more mass lesions and the rest were normal. For stage 1, filter parameters were optimized via a grid search. The CADe identified suspicious locations were reconstructed to yield 3D CADe volumes of interest. The first stage yielded a maximum sensitivity of 93% with 7.7 FPs/breast volume. Unlike traditional CADe algorithms in which the second stage FP reduction is done via feature extraction and analysis, instead information theory principles were used with mutual information as a similarity metric. Three schemes were proposed, all using leave-one-case-out cross validation sampling. The three schemes, A, B, and C, differed in the composition of their knowledge base of regions of interest (ROIs). Scheme A's knowledge base was comprised of all the mass and FP ROIs generated by the first stage of the algorithm. Scheme B had a knowledge base that contained information from mass ROIs and randomly extracted normal ROIs. Scheme C had information from three sources of information-masses, FPs, and normal ROIs. Also, performance was assessed as a function of the composition of the knowledge base in terms of the number of FP or normal ROIs needed by the system to reach optimal performance. The results indicated that the knowledge base needed no more than 20 times as many FPs and 30 times as many normal ROIs as masses to attain maximal performance. The best overall system performance was 85% sensitivity with 2.4 FPs per breast volume for scheme A, 3.6 FPs per breast volume for scheme B, and 3 FPs per breast volume for scheme C.
The purpose of this study was to propose and implement a computer aided detection (CADe) tool for breast tomosynthesis. This task was accomplished in two stages-a highly sensitive mass detector followed by a false positive (FP) reduction stage. Breast tomosynthesis data from 100 human subject cases were used, of which 25 subjects had one or more mass lesions and the rest were normal. For stage 1, filter parameters were optimized via a grid search. The CADe identified suspicious locations were reconstructed to yield 3D CADe volumes of interest. The first stage yielded a maximum sensitivity of 93% with 7.7 FPs/breast volume. Unlike traditional CADe algorithms in which the second stage FP reduction is done via feature extraction and analysis, instead information theory principles were used with mutual information as a similarity metric. Three schemes were proposed, all using leave-one-case-out cross validation sampling. The three schemes, A, B, and C, differed in the composition of their knowledge base of regions of interest (ROIs). Scheme A's knowledge base was comprised of all the mass and FP ROIs generated by the first stage of the algorithm. Scheme B had a knowledge base that contained information from mass ROIs and randomly extracted normal ROIs. Scheme C had information from three sources of information-masses, FPs, and normal ROIs. Also, performance was assessed as a function of the composition of the knowledge base in terms of the number of FP or normal ROIs needed by the system to reach optimal performance. The results indicated that the knowledge base needed no more than 20 times as many FPs and 30 times as many normal ROIs as masses to attain maximal performance. The best overall system performance was 85% sensitivity with 2.4 FPs per breast volume for scheme A, 3.6 FPs per breast volume for scheme B, and 3 FPs per breast volume for scheme C.The purpose of this study was to propose and implement a computer aided detection (CADe) tool for breast tomosynthesis. This task was accomplished in two stages-a highly sensitive mass detector followed by a false positive (FP) reduction stage. Breast tomosynthesis data from 100 human subject cases were used, of which 25 subjects had one or more mass lesions and the rest were normal. For stage 1, filter parameters were optimized via a grid search. The CADe identified suspicious locations were reconstructed to yield 3D CADe volumes of interest. The first stage yielded a maximum sensitivity of 93% with 7.7 FPs/breast volume. Unlike traditional CADe algorithms in which the second stage FP reduction is done via feature extraction and analysis, instead information theory principles were used with mutual information as a similarity metric. Three schemes were proposed, all using leave-one-case-out cross validation sampling. The three schemes, A, B, and C, differed in the composition of their knowledge base of regions of interest (ROIs). Scheme A's knowledge base was comprised of all the mass and FP ROIs generated by the first stage of the algorithm. Scheme B had a knowledge base that contained information from mass ROIs and randomly extracted normal ROIs. Scheme C had information from three sources of information-masses, FPs, and normal ROIs. Also, performance was assessed as a function of the composition of the knowledge base in terms of the number of FP or normal ROIs needed by the system to reach optimal performance. The results indicated that the knowledge base needed no more than 20 times as many FPs and 30 times as many normal ROIs as masses to attain maximal performance. The best overall system performance was 85% sensitivity with 2.4 FPs per breast volume for scheme A, 3.6 FPs per breast volume for scheme B, and 3 FPs per breast volume for scheme C.
The purpose of this study was to propose and implement a computer aided detection (CADe) tool for breast tomosynthesis. This task was accomplished in two stages—a highly sensitive mass detector followed by a false positive (FP) reduction stage. Breast tomosynthesis data from 100 human subject cases were used, of which 25 subjects had one or more mass lesions and the rest were normal. For stage 1, filter parameters were optimized via a grid search. The CADe identified suspicious locations were reconstructed to yield 3D CADe volumes of interest. The first stage yielded a maximum sensitivity of 93% with 7.7 FPs∕breast volume. Unlike traditional CADe algorithms in which the second stage FP reduction is done via feature extraction and analysis, instead information theory principles were used with mutual information as a similarity metric. Three schemes were proposed, all using leave-one-case-out cross validation sampling. The three schemes, A, B, and C, differed in the composition of their knowledge base of regions of interest (ROIs). Scheme A’s knowledge base was comprised of all the mass and FP ROIs generated by the first stage of the algorithm. Scheme B had a knowledge base that contained information from mass ROIs and randomly extracted normal ROIs. Scheme C had information from three sources of information—masses, FPs, and normal ROIs. Also, performance was assessed as a function of the composition of the knowledge base in terms of the number of FP or normal ROIs needed by the system to reach optimal performance. The results indicated that the knowledge base needed no more than 20 times as many FPs and 30 times as many normal ROIs as masses to attain maximal performance. The best overall system performance was 85% sensitivity with 2.4 FPs per breast volume for scheme A, 3.6 FPs per breast volume for scheme B, and 3 FPs per breast volume for scheme C.
Author Baker, Jay A.
Singh, Swatee
Lo, Joseph Y.
Samei, Ehsan
Tourassi, Georgia D.
Author_xml – sequence: 1
  givenname: Swatee
  surname: Singh
  fullname: Singh, Swatee
  organization: Duke Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705
– sequence: 2
  givenname: Georgia D.
  surname: Tourassi
  fullname: Tourassi, Georgia D.
  organization: Duke Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, and Department of Medical Physics, Duke University, Durham, North Carolina 27705
– sequence: 3
  givenname: Jay A.
  surname: Baker
  fullname: Baker, Jay A.
  organization: Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
– sequence: 4
  givenname: Ehsan
  surname: Samei
  fullname: Samei, Ehsan
  organization: Duke Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, Department of Medical Physics, and Department of Physics, Duke University, Durham, North Carolina 27710
– sequence: 5
  givenname: Joseph Y.
  surname: Lo
  fullname: Lo, Joseph Y.
  organization: Duke Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering and Department of Medical Physics, Duke University, Durham, North Carolina 27705
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18777923$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS3Uik4LC_4A8ooFUorfiVkgjUpLkYpgAWvrjnPDBCVxsJ1B8-_JaIY-VJXVXdxzvmPfc0qOhjAgIa84O-ecV-_4ubBaaiOekYVQpSyUYPaILBizqhCK6RNymtIvxpiRmj0nJ7wqy9IKuSCwnHLoIWNNVxEhZdpDSrTGjD63YaDtQOVHGtGHIeU4-Z1ydoS0HfIaU5voJnRTj-k9XdIGIU8RO5wRMI4xgF-_IMcNdAlfHuYZ-XF1-f3iurj5-unzxfKmGJURorBceKWtBuVXVYmaY-0ZNBUTMH_GVswKpbUHqSwaow0KYbFpGhBgDZpanpEPe-44rfrZjEOO0Lkxtj3ErQvQuoeboV27n2HjhCmlUXYGvDkAYvg9Ycqub5PHroMBw5ScsVoYacQsfH0_6Tbi31VnQbEX_Gk73N7tmdvV5bg71OW-fNuNu6cn32bYnf1pz21fbt-Xm_uaAW-fAmxCvBc41s3_xI_S5F_I3bw2
CODEN MPHYA6
Cites_doi 10.1118/1.2349839
10.1118/1.1359250
10.1109/42.836371
10.1118/1.2208919
10.1109/TMI.2005.852048
10.1118/1.2756612
10.1118/1.2211710
10.2214/AJR.06.0843
10.1118/1.1446098
10.1118/1.1738960
10.1118/1.2776256
10.1118/1.598531
10.1118/1.1381548
10.1118/1.2357838
10.2214/AJR.07.2231
10.1088/0031-9155/44/5/011
10.1118/1.596358
10.1118/1.598389
10.1109/42.650877
10.1118/1.598852
10.1118/1.2163390
10.1118/1.2751075
10.1088/0031-9155/49/18/003
10.1118/1.2401667
10.1118/1.1589494
10.1118/1.1344203
10.1118/1.1580485
10.1118/1.1997327
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2008 American Association of Physicists in Medicine
Copyright © 2008 American Association of Physicists in Medicine 2008 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2008 American Association of Physicists in Medicine
– notice: Copyright © 2008 American Association of Physicists in Medicine 2008 American Association of Physicists in Medicine
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1118/1.2953562
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage 3636
ExternalDocumentID PMC2673649
18777923
MP3562
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01 CA101911
– fundername: NIH
  grantid: NIH/NCI R01 CA112437
– fundername: NIH
  funderid: R01 CA101911
– fundername: U.S. Army Breast Cancer Research Program
  funderid: W81XWH‐05‐1‐0293
– fundername: NIH
  funderid: NIH/NCI R01 CA112437
– fundername: NCI NIH HHS
  grantid: R01 CA112437
– fundername: NCI NIH HHS
  grantid: R01 CA101911
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABUFD
LH4
5PM
ID FETCH-LOGICAL-p4622-912c4595a4cb87e51edc0af802a20998092455ca349e6656e229efffa2a96e6d3
IEDL.DBID DRFUL
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258038900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
IngestDate Tue Nov 04 02:00:53 EST 2025
Sun Nov 09 12:28:33 EST 2025
Mon Jul 21 05:46:55 EDT 2025
Wed Jan 22 16:21:45 EST 2025
Fri Jun 21 00:19:57 EDT 2024
Fri Jun 21 00:29:03 EDT 2024
Sun Jul 14 10:05:19 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords knowledge base
mammography
tomosynthesis
reconstructed volume
computer aided detection
mass detection
projection images
information theory
mutual information
breast imaging
masses
Language English
License 0094-2405/2008/35(8)/3626/11/$23.00
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p4622-912c4595a4cb87e51edc0af802a20998092455ca349e6656e229efffa2a96e6d3
Notes swatee.singh@duke.edu
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Electronic mail: swatee.singh@duke.edu
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.2953562
PMID 18777923
PQID 69526362
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_18777923
proquest_miscellaneous_69526362
scitation_primary_10_1118_1_2953562
scitation_primary_10_1118_1_2953562Automated_breast_mas
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2673649
wiley_primary_10_1118_1_2953562_MP3562
PublicationCentury 2000
PublicationDate August 2008
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: August 2008
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2008
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Tourassi, Harrawood, Singh, Lo (c26) 2007; 34
Suzuki, Yoshida, Nappi, Dachman (c36) 2006; 33
Zheng, Chang, Gur (c28) 1995; 2
Ge, Sahiner, Hadjiiski, Chan, Wei, Helvie, Zhou (c14) 2006; 33
Zheng, Chang, Wang, Good, Gur (c11) 1999; 6
Abraham, Hiro (c19) 2003; 41
Schmidt, Sorantin, Szepesvari, Graif, Becker, Mayer, Hartwagner (c8) 1999; 44
Tourassi, Vargas-Voracek, Catarious, Floyd (c41) 2003; 30
Zheng, Chang, Gur (c29) 1996; 3
Wu, Wei, Hadjiiski, Sahiner, Zhou, Ge, Shi, Zhang, Chan (c1) 2007; 34
Tourassi, Harrawood, Singh, Lo, Floyd (c39) 2007; 34
Poplack, Tosteson, Kogel, Nagy (c18) 2007; 189
Polakowski, Cournoyer, Rogers, DeSimio, Ruck, Hoffmeister, Raines (c30) 1997; 16
Paquerault, Petrick, Chan, Sahiner, Helvie (c5) 2002; 29
Li, Zheng, Zheng, Clark (c15) 2001; 28
Chan, Wei, Sahiner, Rafferty, Wu, Roubidoux, Moore, Kopans, Hadjiiski, Helvie (c23) 2005; 237
Qian, Li, Clarke (c6) 1999; 26
Catarious, Baydush, Floyd (c10) 2004; 31
Suzuki, Shiraishi, Abe, MacMahon, Doi (c37) 2005; 12
Chang, Hardesty, Hakim, Chang, Zheng, Good, Gur (c40) 2001; 28
Sahiner, Chan, Hadjiiski, Helvie, Paramagul, Ge, Wei, Zhou (c3) 2006; 33
Reiser, Nishikawa, Giger, Wu, Rafferty, Moore, Kopans (c20) 2006; 33
Wei, Chan, Sahiner, Hadjiiski, Helvie, Roubidoux, Zhou, Ge (c2) 2006; 33
Yu, Guan (c7) 2000; 19
Gavrielides, Lo, Vargas-Voracek, Floyd (c13) 2000; 27
Chakraborty (c45) 1989; 16
Bilska-Wolak, Floyd (c42) 2004; 49
Samei, Stebbins, Dobbins, Lo (c27) 2007; 188
Wei, Sahiner, Hadjiiski, Chan, Petrick, Helvie, Roubidoux, Ge, Zhou (c4) 2005; 32
Sahiner, Chan, Petrick, Helvie, Hadjiiski (c16) 2001; 28
Suzuki, Armato, Li, Sone, Doi (c35) 2003; 30
Chan, Sahiner, Lam, Petrick, Helvie, Goodsitt, Adler (c12) 1998; 25
Chen, Dobbins, Lo (c31) 2007; 34
Suzuki, Suzuki, Feng, Sone, Doi (c38) 2005; 24
Huo, Giger, Vyborny, Wolverton, Metz (c9) 2000; 7
Suzuki, K.; Suzuki, K.; Feng, L.; Sone, S.; Doi, K. 2005; 24
Zheng, B.; Chang, Y.; Wang, X.; Good, W.; Gur, D. 1999; 6
Zheng, B.; Chang, Y.; Gur, D. 1996; 3
Chang, Y.; Hardesty, L.; Hakim, C.; Chang, T.; Zheng, B.; Good, W.; Gur, D. 2001; 28
Huo, Z.; Giger, M.; Vyborny, C.; Wolverton, D.; Metz, C. 2000; 7
Chen, Y.; Dobbins, J.; Lo, J. 2007; 34
Samei, E.; Stebbins, S.; Dobbins, J.; Lo, J. 2007; 188
Chakraborty, D. 1989; 16
Sahiner, B.; Chan, H.-P.; Hadjiiski, L.; Helvie, M.; Paramagul, C.; Ge, J.; Wei, J.; Zhou, C. 2006; 33
Bilska-Wolak, A.; Floyd, C. 2004; 49
Suzuki, K.; Armato, S.; Li, F.; Sone, S.; Doi, K. 2003; 30
Suzuki, K.; Shiraishi, J.; Abe, H.; MacMahon, H.; Doi, K. 2005; 12
Abraham, H.; Hiro, Y. 2003; 41
Paquerault, S.; Petrick, N.; Chan, H.; Sahiner, B.; Helvie, M. 2002; 29
Ge, J.; Sahiner, B.; Hadjiiski, L.; Chan, H.-P.; Wei, J.; Helvie, M.; Zhou, C. 2006; 33
Yu, S.; Guan, L. 2000; 19
Li, L.; Zheng, Y.; Zheng, L.; Clark, R. 2001; 28
Zheng, B.; Chang, Y.; Gur, D. 1995; 2
Wu, Y.-T.; Wei, J.; Hadjiiski, L.; Sahiner, B.; Zhou, C.; Ge, J.; Shi, J.; Zhang, Y.; Chan, H.-P. 2007; 34
Qian, W.; Li, L.; Clarke, L. 1999; 26
Tourassi, G.; Vargas-Voracek, R.; Catarious, J.; Floyd, J. 2003; 30
Wei, J.; Sahiner, B.; Hadjiiski, L.; Chan, H.-P.; Petrick, N.; Helvie, M.; Roubidoux, M.; Ge, J.; Zhou, C. 2005; 32
Catarious, D.; Baydush, A.; Floyd, C. 2004; 31
Tourassi, G.; Harrawood, B.; Singh, S.; Lo, J. 2007; 34
Sahiner, B.; Chan, H.-P.; Petrick, N.; Helvie, M.; Hadjiiski, L. 2001; 28
Reiser, I.; Nishikawa, R.; Giger, M.; Wu, T.; Rafferty, E.; Moore, R.; Kopans, D. 2006; 33
Schmidt, F.; Sorantin, E.; Szepesvari, C.; Graif, E.; Becker, M.; Mayer, H.; Hartwagner, K. 1999; 44
Chan, H.; Wei, J.; Sahiner, B.; Rafferty, E.; Wu, T.; Roubidoux, M.; Moore, R.; Kopans, D.; Hadjiiski, L.; Helvie, M. 2005; 237
Wei, J.; Chan, H.-P.; Sahiner, B.; Hadjiiski, L.; Helvie, M.; Roubidoux, M.; Zhou, C.; Ge, J. 2006; 33
Tourassi, G.; Harrawood, B.; Singh, S.; Lo, J.; Floyd, C. 2007; 34
Gavrielides, M.; Lo, J.; Vargas-Voracek, R.; Floyd, C. 2000; 27
Poplack, S.; Tosteson, T.; Kogel, C.; Nagy, H. 2007; 189
Suzuki, K.; Yoshida, H.; Nappi, J.; Dachman, A. 2006; 33
Chan, H.; Sahiner, B.; Lam, K.; Petrick, N.; Helvie, M.; Goodsitt, M.; Adler, D. 1998; 25
Polakowski, W.; Cournoyer, D.; Rogers, S.; DeSimio, M.; Ruck, D.; Hoffmeister, J.; Raines, R. 1997; 16
2007; 189
2000; 27
2007; 6514
2004; 49
2006; 33
2007; 6513
2007; 188
1999; 26
2005; 237
2000; 7
1999; 44
2006
1993
2001; 28
1991
1995; 2
1999; 6
2007; 34
2003; 30
1998; 25
2005; 24
2004; 31
2000; 19
2002; 29
2005; 5745
2005; 32
1997; 16
2005; 5748
2006; 6146
1989; 16
2003; 41
2006; 6144
1996; 3
2006; 6142
2005; 12
References_xml – volume: 34
  start-page: 3885
  issn: 0094-2405
  year: 2007
  ident: c31
  article-title: Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications
  publication-title: Med. Phys.
– volume: 2
  start-page: 959
  issn: 1076-6332
  year: 1995
  ident: c28
  article-title: Computerized detection of masses in digitized mammograms using single-image segmentation and a multilayer topographic feature analysis
  publication-title: Acad. Radiol.
– volume: 189
  start-page: 616
  issn: 0361-803X
  year: 2007
  ident: c18
  article-title: Digital breast tomosynthesis: Initial experience in 98 women with abnormal digital screening mammography
  publication-title: AJR, Am. J. Roentgenol.
– volume: 24
  start-page: 1138
  issn: 0278-0062
  year: 2005
  ident: c38
  article-title: Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
  publication-title: IEEE Trans. Med. Imaging
– volume: 188
  start-page: 1239
  issn: 0361-803X
  year: 2007
  ident: c27
  article-title: Multiprojection correlation imaging for improved detection of pulmonary nodules
  publication-title: AJR, Am. J. Roentgenol.
– volume: 33
  start-page: 2574
  issn: 0094-2405
  year: 2006
  ident: c3
  article-title: Joint two-view information for computerized detection of microcalcifications on mammograms
  publication-title: Med. Phys.
– volume: 16
  start-page: 811
  issn: 0278-0062
  year: 1997
  ident: c30
  article-title: Computer-aided breast cancer detection and diagnosis of masses using difference of Gaussians and derivative-based feature saliency
  publication-title: IEEE Trans. Med. Imaging
– volume: 28
  start-page: 455
  issn: 0094-2405
  year: 2001
  ident: c40
  article-title: Knowledge-based computer-aided detection of masses on digitized mammograms: A preliminary assessment
  publication-title: Med. Phys.
– volume: 41
  start-page: 377
  issn: 0033-8389
  year: 2003
  ident: c19
  article-title: Virtual colonoscopy: Past, present, and future
  publication-title: Radiol. Clin. North Am.
– volume: 34
  start-page: 3193
  issn: 0094-2405
  year: 2007
  ident: c26
  article-title: Information-theoretic CAD system in mammography: Entropy-based indexing for computational efficiency and robust performance
  publication-title: Med. Phys.
– volume: 33
  start-page: 2975
  issn: 0094-2405
  year: 2006
  ident: c14
  article-title: Computer aided detection of clusters of microcalcifications on full field digital mammograms
  publication-title: Med. Phys.
– volume: 34
  start-page: 3334
  issn: 0094-2405
  year: 2007
  ident: c1
  article-title: Bilateral analysis based false positive reduction for computer-aided mass detection
  publication-title: Med. Phys.
– volume: 6
  start-page: 327
  issn: 1076-6332
  year: 1999
  ident: c11
  article-title: Feature selection for computerized mass detection in digitized mammograms by using a genetic algorithm
  publication-title: Acad. Radiol.
– volume: 34
  start-page: 140
  issn: 0094-2405
  year: 2007
  ident: c39
  article-title: Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms
  publication-title: Med. Phys.
– volume: 32
  start-page: 2827
  issn: 0094-2405
  year: 2005
  ident: c4
  article-title: Computer-aided detection of breast masses on full field digital mammograms
  publication-title: Med. Phys.
– volume: 30
  start-page: 1602
  issn: 0094-2405
  year: 2003
  ident: c35
  article-title: Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
  publication-title: Med. Phys.
– volume: 28
  start-page: 250
  issn: 0094-2405
  year: 2001
  ident: c15
  article-title: False-positive reduction in CAD mass detection using a competitive classification strategy
  publication-title: Med. Phys.
– volume: 27
  start-page: 13
  issn: 0094-2405
  year: 2000
  ident: c13
  article-title: Segmentation of suspicious clustered microcalcifications in mammograms
  publication-title: Med. Phys.
– volume: 49
  start-page: 4219
  issn: 0031-9155
  year: 2004
  ident: c42
  article-title: Tolerance to missing data using a likelihood ratio based classifier for computer-aided classification of breast cancer
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 482
  issn: 0094-2405
  year: 2006
  ident: c20
  article-title: Computerized mass detection for digital breast tomosynthesis directly from the projection images
  publication-title: Med. Phys.
– volume: 12
  start-page: 191
  issn: 1076-6332
  year: 2005
  ident: c37
  article-title: False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network1
  publication-title: Acad. Radiol.
– volume: 31
  start-page: 1512
  issn: 0094-2405
  year: 2004
  ident: c10
  article-title: Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system
  publication-title: Med. Phys.
– volume: 33
  start-page: 3814
  issn: 0094-2405
  year: 2006
  ident: c36
  article-title: Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes
  publication-title: Med. Phys.
– volume: 44
  start-page: 1231
  issn: 0031-9155
  year: 1999
  ident: c8
  article-title: An automatic method for the identification and interpretation of clustered microcalcifications in mammograms
  publication-title: Phys. Med. Biol.
– volume: 28
  start-page: 1455
  issn: 0094-2405
  year: 2001
  ident: c16
  article-title: Improvement of mammographic mass characterization using spiculation measures and morphological features
  publication-title: Med. Phys.
– volume: 3
  start-page: 806
  issn: 1076-6332
  year: 1996
  ident: c29
  article-title: Adaptive computer-aided diagnosis scheme of digitized mammograms
  publication-title: Acad. Radiol.
– volume: 29
  start-page: 238
  issn: 0094-2405
  year: 2002
  ident: c5
  article-title: Improvement of computerized mass detection on mammograms: Fusion of two-view information
  publication-title: Med. Phys.
– volume: 30
  start-page: 2123
  issn: 0094-2405
  year: 2003
  ident: c41
  article-title: Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information
  publication-title: Med. Phys.
– volume: 25
  start-page: 2007
  issn: 0094-2405
  year: 1998
  ident: c12
  article-title: Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces
  publication-title: Med. Phys.
– volume: 33
  start-page: 4157
  issn: 0094-2405
  year: 2006
  ident: c2
  article-title: Dual system approach to computer-aided detection of breast masses on mammograms
  publication-title: Med. Phys.
– volume: 19
  start-page: 115
  issn: 0278-0062
  year: 2000
  ident: c7
  article-title: A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films
  publication-title: IEEE Trans. Med. Imaging
– volume: 16
  start-page: 561
  issn: 0094-2405
  year: 1989
  ident: c45
  article-title: Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data
  publication-title: Med. Phys.
– volume: 7
  start-page: 1077
  issn: 1076-6332
  year: 2000
  ident: c9
  article-title: Computerized classification of benign and malignant masses on digitized mammograms: A study of robustness
  publication-title: Acad. Radiol.
– volume: 26
  start-page: 402
  issn: 0094-2405
  year: 1999
  ident: c6
  article-title: Image feature extraction for mass detection in digital mammography: Influence of wavelet analysis
  publication-title: Med. Phys.
– volume: 237
  start-page: 1075
  issn: 0033-8419
  year: 2005
  ident: c23
  article-title: Computer-aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experience
  publication-title: Radiology
– volume: 33
  start-page: 3814-3824
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2349839
– volume: 28
  start-page: 455-461
  year: 2001
  publication-title: Med. Phys.
  doi: 10.1118/1.1359250
– volume: 19
  start-page: 115-126
  year: 2000
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.836371
– volume: 33
  start-page: 2574-2585
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2208919
– volume: 24
  start-page: 1138-1150
  year: 2005
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2005.852048
– volume: 2
  start-page: 959-966
  year: 1995
  publication-title: Acad. Radiol.
– volume: 3
  start-page: 806-814
  year: 1996
  publication-title: Acad. Radiol.
– volume: 34
  start-page: 3334-3344
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2756612
– volume: 33
  start-page: 2975-2988
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2211710
– volume: 188
  start-page: 1239-1245
  year: 2007
  publication-title: AJR, Am. J. Roentgenol.
  doi: 10.2214/AJR.06.0843
– volume: 29
  start-page: 238-247
  year: 2002
  publication-title: Med. Phys.
  doi: 10.1118/1.1446098
– volume: 6
  start-page: 327-332
  year: 1999
  publication-title: Acad. Radiol.
– volume: 31
  start-page: 1512-1520
  year: 2004
  publication-title: Med. Phys.
  doi: 10.1118/1.1738960
– volume: 34
  start-page: 3885-3892
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2776256
– volume: 26
  start-page: 402-408
  year: 1999
  publication-title: Med. Phys.
  doi: 10.1118/1.598531
– volume: 28
  start-page: 1455-1465
  year: 2001
  publication-title: Med. Phys.
  doi: 10.1118/1.1381548
– volume: 33
  start-page: 4157-4168
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2357838
– volume: 189
  start-page: 616-623
  year: 2007
  publication-title: AJR, Am. J. Roentgenol.
  doi: 10.2214/AJR.07.2231
– volume: 44
  start-page: 1231-1243
  year: 1999
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/44/5/011
– volume: 237
  start-page: 1075-1080
  year: 2005
  publication-title: Radiology
– volume: 16
  start-page: 561-568
  year: 1989
  publication-title: Med. Phys.
  doi: 10.1118/1.596358
– volume: 25
  start-page: 2007-2019
  year: 1998
  publication-title: Med. Phys.
  doi: 10.1118/1.598389
– volume: 16
  start-page: 811-819
  year: 1997
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.650877
– volume: 27
  start-page: 13-22
  year: 2000
  publication-title: Med. Phys.
  doi: 10.1118/1.598852
– volume: 33
  start-page: 482-491
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2163390
– volume: 34
  start-page: 3193-3204
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2751075
– volume: 49
  start-page: 4219-4237
  year: 2004
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/49/18/003
– volume: 12
  start-page: 191-201
  year: 2005
  publication-title: Acad. Radiol.
– volume: 34
  start-page: 140-150
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2401667
– volume: 30
  start-page: 2123-2130
  year: 2003
  publication-title: Med. Phys.
  doi: 10.1118/1.1589494
– volume: 7
  start-page: 1077-1084
  year: 2000
  publication-title: Acad. Radiol.
– volume: 41
  start-page: 377-393
  year: 2003
  publication-title: Radiol. Clin. North Am.
– volume: 28
  start-page: 250-258
  year: 2001
  publication-title: Med. Phys.
  doi: 10.1118/1.1344203
– volume: 30
  start-page: 1602-1617
  year: 2003
  publication-title: Med. Phys.
  doi: 10.1118/1.1580485
– volume: 32
  start-page: 2827-2838
  year: 2005
  publication-title: Med. Phys.
  doi: 10.1118/1.1997327
– volume: 25
  start-page: 2007
  year: 1998
  end-page: 2019
  article-title: Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces
  publication-title: Med. Phys.
– volume: 34
  start-page: 3885
  year: 2007
  end-page: 3892
  article-title: Importance of point‐by‐point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications
  publication-title: Med. Phys.
– volume: 237
  start-page: 1075
  year: 2005
  end-page: 1080
  article-title: Computer‐aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experience
  publication-title: Radiology
– volume: 32
  start-page: 2827
  year: 2005
  end-page: 2838
  article-title: Computer‐aided detection of breast masses on full field digital mammograms
  publication-title: Med. Phys.
– volume: 27
  start-page: 13
  year: 2000
  end-page: 22
  article-title: Segmentation of suspicious clustered microcalcifications in mammograms
  publication-title: Med. Phys.
– volume: 16
  start-page: 561
  year: 1989
  end-page: 568
  article-title: Maximum likelihood analysis of free‐response receiver operating characteristic (FROC) data
  publication-title: Med. Phys.
– volume: 3
  start-page: 806
  year: 1996
  end-page: 814
  article-title: Adaptive computer‐aided diagnosis scheme of digitized mammograms
  publication-title: Acad. Radiol.
– volume: 6513
  year: 2007
– volume: 49
  start-page: 4219
  year: 2004
  end-page: 4237
  article-title: Tolerance to missing data using a likelihood ratio based classifier for computer‐aided classification of breast cancer
  publication-title: Phys. Med. Biol.
– volume: 19
  start-page: 115
  year: 2000
  end-page: 126
  article-title: A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: 327
  year: 1999
  end-page: 332
  article-title: Feature selection for computerized mass detection in digitized mammograms by using a genetic algorithm
  publication-title: Acad. Radiol.
– volume: 30
  start-page: 1602
  year: 2003
  end-page: 1617
  article-title: Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low‐dose computed tomography
  publication-title: Med. Phys.
– volume: 33
  start-page: 2574
  year: 2006
  end-page: 2585
  article-title: Joint two‐view information for computerized detection of microcalcifications on mammograms
  publication-title: Med. Phys.
– volume: 34
  start-page: 140
  year: 2007
  end-page: 150
  article-title: Evaluation of information‐theoretic similarity measures for content‐based retrieval and detection of masses in mammograms
  publication-title: Med. Phys.
– volume: 6514
  start-page: 651416
  year: 2007
  end-page: 651416
– volume: 31
  start-page: 1512
  year: 2004
  end-page: 1520
  article-title: Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system
  publication-title: Med. Phys.
– volume: 34
  start-page: 3334
  year: 2007
  end-page: 3344
  article-title: Bilateral analysis based false positive reduction for computer‐aided mass detection
  publication-title: Med. Phys.
– volume: 188
  start-page: 1239
  year: 2007
  end-page: 1245
  article-title: Multiprojection correlation imaging for improved detection of pulmonary nodules
  publication-title: AJR, Am. J. Roentgenol.
– volume: 5748
  start-page: 399
  year: 2005
  end-page: 406
– volume: 6142
  start-page: 61420F
  year: 2006
  end-page: 61412
– volume: 33
  start-page: 3814
  year: 2006
  end-page: 3824
  article-title: Massive‐training artificial neural network (MTANN) for reduction of false positives in computer‐aided detection of polyps: Suppression of rectal tubes
  publication-title: Med. Phys.
– volume: 28
  start-page: 250
  year: 2001
  end-page: 258
  article-title: False‐positive reduction in CAD mass detection using a competitive classification strategy
  publication-title: Med. Phys.
– volume: 2
  start-page: 959
  year: 1995
  end-page: 966
  article-title: Computerized detection of masses in digitized mammograms using single‐image segmentation and a multilayer topographic feature analysis
  publication-title: Acad. Radiol.
– volume: 41
  start-page: 377
  year: 2003
  end-page: 393
  article-title: Virtual colonoscopy: Past, present, and future
  publication-title: Radiol. Clin. North Am.
– volume: 12
  start-page: 191
  year: 2005
  end-page: 201
  article-title: False‐positive reduction in computer‐aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network1
  publication-title: Acad. Radiol.
– volume: 29
  start-page: 238
  year: 2002
  end-page: 247
  article-title: Improvement of computerized mass detection on mammograms: Fusion of two‐view information
  publication-title: Med. Phys.
– volume: 33
  start-page: 482
  year: 2006
  end-page: 491
  article-title: Computerized mass detection for digital breast tomosynthesis directly from the projection images
  publication-title: Med. Phys.
– volume: 6144
  start-page: 61441Z
  year: 2006
  end-page: 61410
– volume: 33
  start-page: 2975
  year: 2006
  end-page: 2988
  article-title: Computer aided detection of clusters of microcalcifications on full field digital mammograms
  publication-title: Med. Phys.
– volume: 189
  start-page: 616
  year: 2007
  end-page: 623
  article-title: Digital breast tomosynthesis: Initial experience in 98 women with abnormal digital screening mammography
  publication-title: AJR, Am. J. Roentgenol.
– volume: 44
  start-page: 1231
  year: 1999
  end-page: 1243
  article-title: An automatic method for the identification and interpretation of clustered microcalcifications in mammograms
  publication-title: Phys. Med. Biol.
– volume: 34
  start-page: 3193
  year: 2007
  end-page: 3204
  article-title: Information‐theoretic CAD system in mammography: Entropy‐based indexing for computational efficiency and robust performance
  publication-title: Med. Phys.
– volume: 16
  start-page: 811
  year: 1997
  end-page: 819
  article-title: Computer‐aided breast cancer detection and diagnosis of masses using difference of Gaussians and derivative‐based feature saliency
  publication-title: IEEE Trans. Med. Imaging
– year: 2006
– volume: 6146
  year: 2006
– volume: 33
  start-page: 4157
  year: 2006
  end-page: 4168
  article-title: Dual system approach to computer‐aided detection of breast masses on mammograms
  publication-title: Med. Phys.
– volume: 7
  start-page: 1077
  year: 2000
  end-page: 1084
  article-title: Computerized classification of benign and malignant masses on digitized mammograms: A study of robustness
  publication-title: Acad. Radiol.
– volume: 28
  start-page: 1455
  year: 2001
  end-page: 1465
  article-title: Improvement of mammographic mass characterization using spiculation measures and morphological features
  publication-title: Med. Phys.
– volume: 24
  start-page: 1138
  year: 2005
  end-page: 1150
  article-title: Computer‐aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low‐dose CT by use of massive training artificial neural network
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 402
  year: 1999
  end-page: 408
  article-title: Image feature extraction for mass detection in digital mammography: Influence of wavelet analysis
  publication-title: Med. Phys.
– year: 1991
– volume: 5745
  start-page: 529
  year: 2005
  end-page: 540
– year: 1993
– volume: 28
  start-page: 455
  year: 2001
  end-page: 461
  article-title: Knowledge‐based computer‐aided detection of masses on digitized mammograms: A preliminary assessment
  publication-title: Med. Phys.
– volume: 30
  start-page: 2123
  year: 2003
  end-page: 2130
  article-title: Computer‐assisted detection of mammographic masses: A template matching scheme based on mutual information
  publication-title: Med. Phys.
SSID ssj0006350
Score 2.0976725
Snippet The purpose of this study was to propose and implement a computer aided detection (CADe) tool for breast tomosynthesis. This task was accomplished in two...
SourceID pubmedcentral
proquest
pubmed
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
Enrichment Source
StartPage 3626
SubjectTerms Algorithms
biological organs
Breast - pathology
breast imaging
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Computed tomography
computer aided detection
Computer aided diagnosis
computerised tomography
Digital tomosynthesis mammography
False Positive Reactions
Female
gynaecology
Humans
image reconstruction
Image sensors
Information and communication theory
information theory
knowledge base
Knowledge bases
mammography
Mammography - methods
mass detection
masses
medical image processing
Medical imaging
mutual information
Pattern Recognition, Automated - methods
projection images
Radiation Imaging Physics
Radiographic Image Interpretation, Computer-Assisted - methods
Radiologists
reconstructed volume
Reconstruction
Sensitivity and Specificity
tomosynthesis
Title Automated breast mass detection in 3D reconstructed tomosynthesis volumes: A featureless approach
URI http://dx.doi.org/10.1118/1.2953562
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.2953562
https://www.ncbi.nlm.nih.gov/pubmed/18777923
https://www.proquest.com/docview/69526362
https://pubmed.ncbi.nlm.nih.gov/PMC2673649
Volume 35
WOSCitedRecordID wos000258038900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STV-XPtLX9pEKWnozsa2Hrfa0NF16SEIoTdmbkOUx3UPtJd4E-u87krwOS1MI9OSDNcLwjUbfeEafAN43BYVDndpEpZVMhFOY2IrzRGaYqgqzRoRT7z-OipOTcrHQpzvwaXMWJupDjD_c_MoI8dovcFsNt5BkvnGdkjstufTxdzcnvxUT2D38Nj87GgMx7aXxBIoWvoggB2EhMj8Yja8jln_3R96j7ShWxrc5bNiE5g__6_MfwYOBe7JZdJbHsIPtHtw9Hqrre3AntIO6_gnY2cW6Iy6LNat81_qa_SKSzWpch86tli1bxg9ZyKajAi2NJIuu_90So-yXPYthr__IZqzBqNtMQZVtNMyfwtn8y_fPX5PhMoZkJRQlrDrLnZBaWuGqskDCsnapbco0t_70bZlSIiels1xoVEQSMc81Nk1jc6sVqpo_g0nbtfgCGEqifbriglstdOasK1MsFTFV7quCfApvN5gYcnZfwbAtdhe9UVrmirbcKTyPCJlV1OQwmdc11N622MJuHOBltLfftMufQU47961tQk_h3Yjy1bQhRSpNZga0aP4bjBpBMhEkQyBdO_9ld35lZVZ1M4UPwWv-Pbc5PvWPlzcd-Aruxx4X37T4GibkFPgGbrvL9bI_34dbxaLcH1bOH6NgGhM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6hwsZegDG2FbZhadPeIpL4R-OJlwpWMdFWaIKJN8txHNGHJRUpSPvvd7bToAomIe0pD_FZkb7z-Tvf-QvAl3KA4VDGOhJxziNmhI10TmnEExuL3CYl87fef40H02l2fS0v1uB4eRcm6EN0B25uZfh47Ra4O5BuV7nrXMfsTnLKXQBeZ-hGvAfrpz9HV-MuEuNmGq6gSOaqCLxVFkLzo874KWb5uEFyE_ejUBpfJbF-Fxpt_9_378BWyz7JMLjLa1iz1S68nLT19V144RtCTfMG9PBuUSObtQXJXd_6gvxGmk0Ku_C9WxWZVYSeEp9PBw1aHIkWdfOnQk7ZzBoSAl_zjQxJaYNyM4ZVslQx34Or0ffLk7Oo_R1DNGcCU1aZpIZxyTUzeTawiGZhYl1mcard_dssxlSOc6Mpk1YgTbRpKm1ZljrVUlhR0LfQq-rKvgdiORI_mVNGtWQyMdpksc0EclXq6oK0D4dLUBS6u6th6MrWd40SkqcCN90-vAsQqXlQ5VCJUzaUznawAl43wAlpr76pZjdeUDt1zW1M9uFzB_PDtD5JylSiWrRw_meM6kBSASSFID05_319-2Cl5kXZh6_ebf49t5pcuMf-cwcewubZ5WSsxj-m5wfwKnS8uBbGD9BDB7EfYcPcL2bN7ad2Af0F1RYdGw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1VLbRcKBQooYWuBOJm1fZ-xIu4RIQIRBpFiKLeVmt7LHLAjuq0Ev-e2V3HVdQiVeKUQ3ZWVt7M7BvP7AvAu2pI6VDHNlJxLiNRKIxsznkkE4xVjkkl_K33n9PhbJZdXOj5Fnxc34UJ-hD9CzcXGT5fuwDHZVl1Ue4m16m605JLl4B3hNSKwnJn_H1yPu0zMR2m4QqKFq6LIDtlITI_7Y3vYpa3ByT36DwKrfFNEutPocn-_z3_E3jcsU82Cu7yFLawPoDds66_fgAP_UBo0T4DO7paNcRmsWS5m1tfsd9Es1mJKz-7VbNFzfiY-Xo6aNDSSrJo2j81ccp20bKQ-NoPbMQqDMrNlFbZWsX8OZxPPv_49CXq_o4hWgpFJatO0oJ-Z2lFkWdDJDTLIrZVFqfW3b_NYirlpCwsFxoV0URMU41VVdnUaoWq5C9gu25qfAkMJRE_nXPBrRY6KWyRxZgp4qrc9QX5AE7WoBhyd9fDsDU2V61RWqaKDt0BHAaIzDKocpjEKRtqZzvcAK9f4IS0N7-pF7-8oHbqhtuEHsDbHuabbX2RlJnEdGjR_vdY1YNkAkiGQLpz_-vm8sbKkIcM4L13m3_vbc7m7uPVfReewO58PDHTr7NvR_AoDLy4CcZj2Cb_wNfwoLheLdrLN138_AU2eRyW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+breast+mass+detection+in+3D+reconstructed+tomosynthesis+volumes%3A+a+featureless+approach&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Singh%2C+Swatee&rft.au=Tourassi%2C+Georgia+D&rft.au=Baker%2C+Jay+A&rft.au=Samei%2C+Ehsan&rft.date=2008-08-01&rft.issn=0094-2405&rft.volume=35&rft.issue=8&rft.spage=3626&rft_id=info:doi/10.1118%2F1.2953562&rft_id=info%3Apmid%2F18777923&rft.externalDocID=18777923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon