A DEEP LEARNING APPROACH FOR CANCER DETECTION AND RELEVANT GENE IDENTIFICATION
Cancer detection from gene expression data continues to pose a challenge due to the high dimensionality and complexity of these data. After decades of research there is still uncertainty in the clinical diagnosis of cancer and the identification of tumor-specific markers. Here we present a deep lear...
Saved in:
| Published in: | Biocomputing 2017 Vol. 22; pp. 219 - 229 |
|---|---|
| Main Authors: | , , |
| Format: | Book Chapter Journal Article |
| Language: | English |
| Published: |
United States
WORLD SCIENTIFIC
01.01.2017
|
| Subjects: | |
| ISBN: | 9789813207820, 9789813207806, 9813207825, 9813207809, 9789813207813, 9813207817 |
| ISSN: | 2335-6936 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cancer detection from gene expression data continues to pose a challenge due to the high dimensionality and complexity of these data. After decades of research there is still uncertainty in the clinical diagnosis of cancer and the identification of tumor-specific markers. Here we present a deep learning approach to cancer detection, and to the identification of genes critical for the diagnosis of breast cancer. First, we used Stacked Denoising Autoencoder (SDAE) to deeply extract functional features from high dimensional gene expression profiles. Next, we evaluated the performance of the extracted representation through supervised classification models to verify the usefulness of the new features in cancer detection. Lastly, we identified a set of highly interactive genes by analyzing the SDAE connectivity matrices. Our results and analysis illustrate that these highly interactive genes could be useful cancer biomarkers for the detection of breast cancer that deserve further studies. |
|---|---|
| AbstractList | Cancer detection from gene expression data continues to pose a challenge due to the high dimensionality and complexity of these data. After decades of research there is still uncertainty in the clinical diagnosis of cancer and the identification of tumor-specific markers. Here we present a deep learning approach to cancer detection, and to the identification of genes critical for the diagnosis of breast cancer. First, we used Stacked Denoising Autoencoder (SDAE) to deeply extract functional features from high dimensional gene expression profiles. Next, we evaluated the performance of the extracted representation through supervised classification models to verify the usefulness of the new features in cancer detection. Lastly, we identified a set of highly interactive genes by analyzing the SDAE connectivity matrices. Our results and analysis illustrate that these highly interactive genes could be useful cancer biomarkers for the detection of breast cancer that deserve further studies. |
| Author | DANAEE, PADIDEH GHAEINI, REZA HENDRIX, DAVID A. |
| Author_xml | – sequence: 1 givenname: PADIDEH surname: DANAEE fullname: DANAEE, PADIDEH email: danaeep@oregonstate.edu – sequence: 2 givenname: REZA surname: GHAEINI fullname: GHAEINI, REZA email: ghaeinim@oregonstate.edu – sequence: 3 givenname: DAVID A. surname: HENDRIX fullname: HENDRIX, DAVID A. email: david.hendrix@oregonstate.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27896977$$D View this record in MEDLINE/PubMed |
| BookMark | eNqdkUtLw0AUhccXttb-ARcySzfReSQzmYWLkE5rIExKiG6HPCYQTZuatIj_3imtILpzcy_c850L954rcL7u1gaAG4zuMXbJg-C-8DEliNuqESLkBEx_DAk6BWNCqecwQdnZL20EpsPwiqwNc88l7BKMiNWZ4HwMVABnUi5hLINURWoBg-UyTYLwCc6TFIaBCmVqiUyGWZQoGKgZTGUsXwKVwYVUEkYzqbJoHoXBHrgGF3XeDmZ67BPwPJdZ-OTEycIisbNxMakdj3oVK6ifs5L7LmeVj92cGbckphKV4VwQ5DJUIlzZA2jJRc1oIYzwauIXFNMJuDvs3fTd-84MW71qhtK0bb423W7Q2Hetn3qMWPT2iO6Klan0pm9Wef-pv39gAX4APrq-rYayMettUzelLrruza5Ceh-C_huCdT7-z6mLvjE1_QL8jn_D |
| ContentType | Book Chapter Journal Article |
| Copyright | World Scientific Publishing Co. Pte. Ltd. |
| Copyright_xml | – notice: World Scientific Publishing Co. Pte. Ltd. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1142/9789813207813_0022 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9789813207820 9813207825 9789813207813 9813207817 |
| EISSN | 2335-6936 |
| Editor | Altman, Russ B Murray, Tiffany A Hunter, Lawrence Ritchie, Marylyn D Klein, Teri E Dunker, A Keith |
| Editor_xml | – sequence: 1 givenname: Russ B surname: Altman fullname: Altman, Russ B organization: Stanford – sequence: 2 givenname: A Keith surname: Dunker fullname: Dunker, A Keith organization: Indiana University – sequence: 3 givenname: Lawrence surname: Hunter fullname: Hunter, Lawrence organization: University of Colorado Health Sciences Center – sequence: 4 givenname: Marylyn D surname: Ritchie fullname: Ritchie, Marylyn D organization: The Pennsylvania State University – sequence: 5 givenname: Tiffany A surname: Murray fullname: Murray, Tiffany A organization: Stanford – sequence: 6 givenname: Teri E surname: Klein fullname: Klein, Teri E organization: Stanford |
| EndPage | 229 |
| ExternalDocumentID | 27896977 10.1142/9789813207813_0022 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R21 AG052950 |
| GroupedDBID | 9WS AABBV AATMT ACZWY ADCHV AIQUZ ALMA_UNASSIGNED_HOLDINGS BBABE CZZ V1H CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-p412f-535d6b38a6c78476d814a6e4c2ed9de77920460c01d8203c79f63b9e95f28b313 |
| ISBN | 9789813207820 9789813207806 9813207825 9813207809 9789813207813 9813207817 |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391254200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Sun Nov 09 14:11:48 EST 2025 Thu Jan 02 22:44:02 EST 2025 Sat Mar 15 05:01:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stacked Denoising Autoencoder Dimensionality Reduction Cancer Detection RNA-seq Expression Deep Learning Classification |
| Language | English |
| LinkModel | OpenURL |
| MeetingName | Pacific Symposium on Biocomputing 2017 |
| MergedId | FETCHMERGED-LOGICAL-p412f-535d6b38a6c78476d814a6e4c2ed9de77920460c01d8203c79f63b9e95f28b313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doi.org/10.1142/9789813207813_0022 |
| PMID | 27896977 |
| PQID | 1844603562 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_27896977 proquest_miscellaneous_1844603562 worldscientific_books_10_1142_9789813207813_0022 worldscientific_books_10_1142_9789813207813_0022_brief |
| PublicationCentury | 2000 |
| PublicationDate | 20170100 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 20170100 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationSubtitle | Proceedings of the Pacific Symposium |
| PublicationTitle | Biocomputing 2017 |
| PublicationTitleAlternate | Pac Symp Biocomput |
| PublicationYear | 2017 |
| Publisher | WORLD SCIENTIFIC |
| Publisher_xml | – name: WORLD SCIENTIFIC |
| SSID | ssj0002175426 ssib015896917 |
| Score | 2.5822124 |
| Snippet | Cancer detection from gene expression data continues to pose a challenge due to the high dimensionality and complexity of these data. After decades of research... |
| SourceID | proquest pubmed worldscientific |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 219 |
| SubjectTerms | Algorithms Biomarkers, Tumor - genetics Breast Neoplasms - classification Breast Neoplasms - diagnosis Breast Neoplasms - genetics Computational Biology Databases, Genetic - statistics & numerical data Female Gene Expression Profiling - statistics & numerical data Gene Ontology Humans PATTERNS IN BIOMEDICAL DATA-HOW DO WE FIND THEM? Principal Component Analysis Supervised Machine Learning |
| Title | A DEEP LEARNING APPROACH FOR CANCER DETECTION AND RELEVANT GENE IDENTIFICATION |
| URI | https://www.worldscientific.com/doi/10.1142/9789813207813_0022 https://www.ncbi.nlm.nih.gov/pubmed/27896977 https://www.proquest.com/docview/1844603562 |
| Volume | 22 |
| WOSCitedRecordID | wos000391254200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ji9swFBaZoYe2UFq6pcugQm_GbSzbsnVUY01jSGzjSdK0FxPbMgwUT8gszK1_vU_W2NmGwhx6EZGxluiT36b3nhD6LEsnr-TSNStSuqZDSGHmlBUmo04lgSMCeWiy64-9KPIXC5b0en_aWJib315d-7e3bPVfoYZnALYKnX0A3F2n8AB-A-hQAuxQ7knEu7ZXnQmDD8NTWNizn5MkPgtnEyOOjG9hPIwnyWyqLFPAijvWE_CIC6FtcUEYiO7Y6PuIizAK9YnSrw7kkYiCNFw0dIrPw8DgX7a3HDcCIRJjLHgaqaF4kqQxH44M0DSNoboFJ4U3pqLxW2nyWqViLOY8mhrKg86AGURTNf2N3ezOHmF5e_aIH3E6DrSFrGmxo68yX0Vse_7gPpqp2S_RBpBDyu4Q7czR9mHZmRJANnysPbvfY2-d0-G_ejlCRyAHAzmcW6PORAfamgsCjE7TtJn6bt2yd-tkALp_9zLbqljeVoW4bQSXQ74ezuc-fecJetZk0dWRssqRbEsSmj5HT1V0DFZhK_CvX6CerF-iiGOFPG6Rxy3yGJDHGnncIY8BedwijxXyeBf5V2h2KqbDkXl3UYe5cixSma7tljS3_SUtPJB2aOlbzpJKpyCyZKX0PEbU-XsxsEpYH7vwWEXtnEnmVsTPbct-jY7ri1q-Rdi3C-rnBS1zCuyFlEvm5bZXskLdsFbSoo8-tQuTASFUp1vLWl5cX2aW78AYNsjzffRGr1i20hlbMhXuTUHT6aPB3hJm6lOFxk14PskOkegj-tAmWb4-l9W7h4_1Hj3efFEf0PHV-lp-RI-Km6vzy_UJbNGFD2WUTE6ajfoXveqDzA |
| linkProvider | Open Access Publishing in European Networks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=PACIFIC+SYMPOSIUM+ON+BIOCOMPUTING+2017&rft.au=DANAEE%2C+PADIDEH&rft.au=GHAEINI%2C+REZA&rft.au=HENDRIX%2C+DAVID+A.&rft.atitle=A+DEEP+LEARNING+APPROACH+FOR+CANCER+DETECTION+AND+RELEVANT+GENE+IDENTIFICATION&rft.date=2017-01-01&rft.pub=WORLD+SCIENTIFIC&rft.isbn=9789813207806&rft.spage=219&rft.epage=229&rft_id=info:doi/10.1142%2F9789813207813_0022&rft.externalDBID=n%2Fa&rft.externalDocID=10.1142%2F9789813207813_0022 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F9789813207813_0022 |

