S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging τ-Leaping and R-Leaping

We propose the S -leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R -leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bulletin of mathematical biology Ročník 81; číslo 8; s. 3074 - 3096
Hlavní autoři: Lipková, Jana, Arampatzis, Georgios, Chatelain, Philippe, Menze, Bjoern, Koumoutsakos, Petros
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2019
Springer Nature B.V
Témata:
ISSN:0092-8240, 1522-9602, 1522-9602
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose the S -leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R -leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R -leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system’s set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ -leaping with the effective sampling procedure from the R -leaping algorithm. The S -leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S -leaping outperforms both methods. We demonstrate the performance and the accuracy of the S -leaping in comparison with the τ -leaping and R -leaping on a number of benchmark systems involving biological reaction networks.
AbstractList We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the -leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system's set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the -leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the -leaping and R-leaping on a number of benchmark systems involving biological reaction networks.
We propose the S-leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ-leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the τ-leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system’s set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ-leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the τ-leaping and R-leaping on a number of benchmark systems involving biological reaction networks.
We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system's set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ -leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the τ -leaping and R-leaping on a number of benchmark systems involving biological reaction networks.We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system's set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ -leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the τ -leaping and R-leaping on a number of benchmark systems involving biological reaction networks.
We propose the S -leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R -leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R -leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system’s set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ -leaping with the effective sampling procedure from the R -leaping algorithm. The S -leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S -leaping outperforms both methods. We demonstrate the performance and the accuracy of the S -leaping in comparison with the τ -leaping and R -leaping on a number of benchmark systems involving biological reaction networks.
Author Koumoutsakos, Petros
Menze, Bjoern
Lipková, Jana
Arampatzis, Georgios
Chatelain, Philippe
Author_xml – sequence: 1
  givenname: Jana
  surname: Lipková
  fullname: Lipková, Jana
  organization: Department of Informatics, Technical University of Munich
– sequence: 2
  givenname: Georgios
  surname: Arampatzis
  fullname: Arampatzis, Georgios
  organization: Computational Science and Engineering Laboratory, ETH Zurich
– sequence: 3
  givenname: Philippe
  surname: Chatelain
  fullname: Chatelain, Philippe
  organization: Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain
– sequence: 4
  givenname: Bjoern
  surname: Menze
  fullname: Menze, Bjoern
  organization: Department of Informatics, Technical University of Munich
– sequence: 5
  givenname: Petros
  orcidid: 0000-0001-8337-2122
  surname: Koumoutsakos
  fullname: Koumoutsakos, Petros
  email: petros@ethz.ch
  organization: Computational Science and Engineering Laboratory, ETH Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29992453$$D View this record in MEDLINE/PubMed
BookMark eNp9kclqHDEQhkWwscfLA-QSBL7k4LZLpaUl38YmGwwYPMlZaFrqsUxvbnUHcs_75ZUiMx4CPuRQFEV99VNV_wk56PouEPKewRUDKK8TY5LrAlgOoURh3pEFk4iFUYAHZAFgsNAo4JicpPQEecZwc0SO0RiDQvIFqdfFKrghdtsbuuzo0rthij_DJV1WVWjC6Kbg6Xrqq0eXpljRdWznxk2xz2yz7cc4PbaX9HaMfps16J_feznqOk8f9tUZOaxdk8L5az4lPz5_-n73tVjdf_l2t1wVA2cwFUyISoTaa6mVMgolrxlizb0qDQsaXY1V7ganfeVEufECjPSm2vCApnaCn5KPO91h7J_nkCbbxpQPaVwX-jlZBKW54FLrjF68QZ_6eezydhZRaSiVhP9ToEoJJQBm6sMrNW_a4O0wxtaNv-z-zxnAHZByq9uG8Z8MA_tipt2ZabOZ9sVMa_hfgOKPZQ
ContentType Journal Article
Copyright Society for Mathematical Biology 2018
Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved.
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Society for Mathematical Biology 2018
– notice: Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved.
– notice: Copyright Springer Nature B.V. 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1007/s11538-018-0464-9
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Medical Database
Science Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Computer Science Database
Entomology Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1522-9602
EndPage 3096
ExternalDocumentID 29992453
10_1007_s11538_018_0464_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 341117
  funderid: http://dx.doi.org/10.13039/100010663
GroupedDBID ---
--Z
-52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5RE
5VS
67Z
6J9
6NX
78A
7X7
88A
8FH
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AACTN
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHHHB
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K7-
KDC
KOV
LLZTM
M0L
M4Y
M7P
MA-
NB0
NF0
NPVJJ
NQJWS
NU0
O-L
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XSW
YLTOR
Z45
Z7U
Z83
ZMTXR
~A9
~EX
~KM
--K
-Y2
.GJ
1B1
1RT
1~5
2.D
28-
2VQ
3O-
4G.
53G
7-5
71M
88E
8AO
8FE
8FG
8FI
8FJ
AAAVM
AAEDT
AALCJ
AALRI
AAPKM
AAQFI
AAQXK
AARHV
AAXUO
AAYTO
ABDBE
ABJCF
ABMAC
ABQSL
ABULA
ABUWG
ABWVN
ACBXY
ACRPL
ADFGL
ADHKG
ADMUD
ADNMO
AEBTG
AEKMD
AFEXP
AFGCZ
AFKRA
AGGDS
AI.
AITUG
AJBLW
ARAPS
AYFIA
BBWZM
BGLVJ
BVXVI
CAG
CCPQU
CGR
COF
CUY
CVF
DM4
ECM
EIF
FGOYB
FIRID
G-2
H13
HLV
HMCUK
IHE
K6V
L6V
LG5
LK8
LW8
M1P
M7S
N2Q
NDZJH
NPM
O9-
OZT
P62
PHGZT
PQQKQ
PSQYO
PTHSS
R2-
RIG
RNI
RPZ
RZK
S1Z
S26
S28
SAB
SCLPG
SEW
SSZ
T16
UKHRP
VH1
WUQ
XPP
ZGI
ZMT
ZWQNP
ZXP
7SS
7TK
7XB
8FK
ABBRH
ABFSG
ABRTQ
ABUFD
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AZQEC
DWQXO
GNUQQ
JQ2
K9.
M2P
PHGZM
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-p310t-144c4efd8586696253f122f3d6791e82af2cfd8ea8dca47bd4095d9cb3e29fa43
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478772200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0092-8240
1522-9602
IngestDate Fri Sep 05 08:24:20 EDT 2025
Thu Dec 04 04:06:25 EST 2025
Tue Oct 07 05:35:18 EDT 2025
Sun Mar 30 01:29:35 EDT 2025
Fri Feb 21 02:39:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Stochastic simulation algorithms
Stiff systems
Accelerated simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p310t-144c4efd8586696253f122f3d6791e82af2cfd8ea8dca47bd4095d9cb3e29fa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8337-2122
PMID 29992453
PQID 2067507002
PQPubID 55445
PageCount 23
ParticipantIDs proquest_miscellaneous_2068343588
proquest_journals_2268076508
proquest_journals_2067507002
pubmed_primary_29992453
springer_journals_10_1007_s11538_018_0464_9
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle A Journal Devoted to Research at the Junction of Computational, Theoretical and Experimental Biology Official Journal of The Society for Mathematical Biology
PublicationTitle Bulletin of mathematical biology
PublicationTitleAbbrev Bull Math Biol
PublicationTitleAlternate Bull Math Biol
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CaoYGillespieDTPetzoldLRAvoiding negative populations in explicit poisson tau-leapingJ Chem Phys2005123505410410.1063/1.1992473
GillespieDTExact stochastic simulation of coupled chemical reactionsJ Phys Chem197781252340236110.1021/j100540a008
CaoYGillespieDTPetzoldLRAdaptive explicit–implicit tau-leaping method with automatic tau selectionJ Chem Phys20071262222410110.1063/1.2745299
KoumoutsakosPFeigelmanJMultiscale stochastic simulations of chemical reactions with regulated scale separationJ Comput Phys2013244290297306422010.1016/j.jcp.2012.11.0301377.80003
AndersonDFKurtzTGContinuous time Markov chain models for chemical reaction networks2011New YorkSpringer342
MaamarHRajADubnauDNoise in gene expression determines cell fate in Bacillus subtilisScience2007317583752652910.1126/science.1140818
GillespieDTApproximate accelerated stochastic simulation of chemically reacting systemsJ Chem Phys2001115171610.1063/1.1378322
Erban R, Chapman J, Maini P (2007) A practical guide to stochastic simulations of reaction-diffusion processes. arXiv:0704.1908
MjolsnessEOrendorffDChatelainPKoumoutsakosPAn exact accelerated stochastic simulation algorithmJ Chem Phys200913014411010.1063/1.3078490
LipkovaJZygalakisKCChapmanSJErbanRAnalysis of Brownian dynamics simulations of reversible bimolecular reactionsSIAM J Appl Math2011713714730279608610.1137/1007942131229.80023
GillespieDTPetzoldLRImproved leap-size selection for accelerated stochastic simulationJ Chem Phys2003119822910.1063/1.1613254
BayatiBOwhadiHKoumoutsakosPA cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA)J Chem Phys2010133241710.1063/1.3518419
KierzekAMSTOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithmBioinformatics (Oxford, England)200218347048110.1093/bioinformatics/18.3.470
CaoYPetzoldLRAccuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systemsJ Comput Phys20062121624218360310.1016/j.jcp.2005.06.0121079.80003
Sandmann W (2009) Exposition and streamlined formulation of adaptive explicitimplicit tau-leaping. Technical report, Citeseer
ErbanRChapmanSJStochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactionsPhys Biology20096404600110.1088/1478-3975/6/4/046001
CaoYGillespieDPetzoldLMultiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systemsJ Comput Phys20052062395411214332410.1016/j.jcp.2004.12.0141088.80004
RathinamMPetzoldLRCaoYGillespieDTStiffness in stochastic chemically reacting systems: the implicit tau-leaping methodJ Chem Phys20031191278410.1063/1.1627296
SüelGMGarcia-OjalvoJLibermanLMElowitzMBAn excitable gene regulatory circuit induces transient cellular differentiationNature2006440708354555010.1038/nature04588
TianTBurrageKBinomial leap methods for simulating stochastic chemical kineticsJ Chem Phys20041211035610.1063/1.1810475
AugerAChatelainPKoumoutsakosPR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-leaping: accelerating the stochastic simulation algorithm by reaction leapsJ Chem Phys2006125808410310.1063/1.2218339
BayatiBChatelainPKoumoutsakosPAdaptive mesh refinement for stochastic reaction–diffusion processesJ Comput Phys201123011326273427910.1016/j.jcp.2010.08.0351205.65020
ChattopadhyayIKuchinaASüelGMLipsonHInverse gillespie for inferring stochastic reaction mechanisms from intermittent samplesProc Natl Acad Sci2013110321299012995310435710.1073/pnas.12145591101292.62142
CaoYGillespieDPetzoldLEfficient step size selection for the tau-leaping simulation methodJ Chem Phys2006124404410910.1063/1.2159468
GillespieDTA general method for numerically simulating the stochastic time evolution of coupled chemical reactionsJ Comput Phys197622440343450337010.1016/0021-9991(76)90041-3
References_xml – reference: TianTBurrageKBinomial leap methods for simulating stochastic chemical kineticsJ Chem Phys20041211035610.1063/1.1810475
– reference: AndersonDFKurtzTGContinuous time Markov chain models for chemical reaction networks2011New YorkSpringer342
– reference: GillespieDTExact stochastic simulation of coupled chemical reactionsJ Phys Chem197781252340236110.1021/j100540a008
– reference: KierzekAMSTOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithmBioinformatics (Oxford, England)200218347048110.1093/bioinformatics/18.3.470
– reference: BayatiBOwhadiHKoumoutsakosPA cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA)J Chem Phys2010133241710.1063/1.3518419
– reference: ErbanRChapmanSJStochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactionsPhys Biology20096404600110.1088/1478-3975/6/4/046001
– reference: CaoYPetzoldLRAccuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systemsJ Comput Phys20062121624218360310.1016/j.jcp.2005.06.0121079.80003
– reference: MaamarHRajADubnauDNoise in gene expression determines cell fate in Bacillus subtilisScience2007317583752652910.1126/science.1140818
– reference: LipkovaJZygalakisKCChapmanSJErbanRAnalysis of Brownian dynamics simulations of reversible bimolecular reactionsSIAM J Appl Math2011713714730279608610.1137/1007942131229.80023
– reference: RathinamMPetzoldLRCaoYGillespieDTStiffness in stochastic chemically reacting systems: the implicit tau-leaping methodJ Chem Phys20031191278410.1063/1.1627296
– reference: Erban R, Chapman J, Maini P (2007) A practical guide to stochastic simulations of reaction-diffusion processes. arXiv:0704.1908
– reference: Sandmann W (2009) Exposition and streamlined formulation of adaptive explicitimplicit tau-leaping. Technical report, Citeseer
– reference: BayatiBChatelainPKoumoutsakosPAdaptive mesh refinement for stochastic reaction–diffusion processesJ Comput Phys201123011326273427910.1016/j.jcp.2010.08.0351205.65020
– reference: AugerAChatelainPKoumoutsakosPR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-leaping: accelerating the stochastic simulation algorithm by reaction leapsJ Chem Phys2006125808410310.1063/1.2218339
– reference: CaoYGillespieDTPetzoldLRAdaptive explicit–implicit tau-leaping method with automatic tau selectionJ Chem Phys20071262222410110.1063/1.2745299
– reference: SüelGMGarcia-OjalvoJLibermanLMElowitzMBAn excitable gene regulatory circuit induces transient cellular differentiationNature2006440708354555010.1038/nature04588
– reference: ChattopadhyayIKuchinaASüelGMLipsonHInverse gillespie for inferring stochastic reaction mechanisms from intermittent samplesProc Natl Acad Sci2013110321299012995310435710.1073/pnas.12145591101292.62142
– reference: KoumoutsakosPFeigelmanJMultiscale stochastic simulations of chemical reactions with regulated scale separationJ Comput Phys2013244290297306422010.1016/j.jcp.2012.11.0301377.80003
– reference: MjolsnessEOrendorffDChatelainPKoumoutsakosPAn exact accelerated stochastic simulation algorithmJ Chem Phys200913014411010.1063/1.3078490
– reference: GillespieDTApproximate accelerated stochastic simulation of chemically reacting systemsJ Chem Phys2001115171610.1063/1.1378322
– reference: GillespieDTPetzoldLRImproved leap-size selection for accelerated stochastic simulationJ Chem Phys2003119822910.1063/1.1613254
– reference: CaoYGillespieDTPetzoldLRAvoiding negative populations in explicit poisson tau-leapingJ Chem Phys2005123505410410.1063/1.1992473
– reference: CaoYGillespieDPetzoldLEfficient step size selection for the tau-leaping simulation methodJ Chem Phys2006124404410910.1063/1.2159468
– reference: CaoYGillespieDPetzoldLMultiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systemsJ Comput Phys20052062395411214332410.1016/j.jcp.2004.12.0141088.80004
– reference: GillespieDTA general method for numerically simulating the stochastic time evolution of coupled chemical reactionsJ Comput Phys197622440343450337010.1016/0021-9991(76)90041-3
SSID ssj0007939
Score 2.2452278
Snippet We propose the S -leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main...
We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated...
We propose the S-leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated...
SourceID proquest
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 3074
SubjectTerms Acceleration
Adaptive algorithms
Algorithms
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Biochemical Phenomena
Cell Biology
Computer Simulation
Dimerization
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Kinetics
Lac Operon
Life Sciences
Markov Chains
Mathematical and Computational Biology
Mathematical Concepts
Mathematics
Mathematics and Statistics
Models, Biological
Monosaccharide Transport Proteins - genetics
Monosaccharide Transport Proteins - metabolism
Sampling
Special Issue: Gillespie and His Algorithms
Stochastic Processes
Symporters - genetics
Symporters - metabolism
Systems Biology
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VWqT2QHm0dIEiI3ErVtePJDYXFKoiDhShbitxixw_ClLJLmyo1Hv_X_8S4zx2DyAuHCNHY8uexzee8QzAHo89Q3TqaRkSQSWTCTVOGGoS5i03PnOybTaRnZ2piwt93l24Tbu0yl4nNorajW28I_8cy4wjdkEBPpzc0Ng1KkZXuxYaC_AyVkkQTere-UwTI--18Fej1KPp6qOazdO5RtSHTMXkRkkfRZgPoqON0Tl--9zlrsByBzdJ3vLHKrzw1RostQ0o_67Bm2-zqq3TdQgjeupNfEB1QPKK5M5MojLcJ7m1aJ1iUQlHRvXYXppY3ZmMrq675l8k__0LZ68vr_fJUXwChjTI_389OWIqR773X-_g5_HXH19OaNeHgU4Q_NUUfS4rfXAqUWmq0WESgXEehEszzbziJnCLo94oZ43MSoc-Y-K0LYXnOhgp3sNiNa78ByCMhzKV1omsxPOQrmTMm2EYilIyY5IwgO1-O4tOmKbFfC8fH-apGmYRaQ5gdzaMUhJDH6by47uGhBKIDBX-s9EebjFpy3kUaJDRCU3EAD71pz0nPq_qHPmlQH4pIr8UevPplW7Ba4RWuk0V3IbF-vbOf4RX9k99Nb3dadj0Hmfv7aU
  priority: 102
  providerName: ProQuest
Title S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging τ-Leaping and R-Leaping
URI https://link.springer.com/article/10.1007/s11538-018-0464-9
https://www.ncbi.nlm.nih.gov/pubmed/29992453
https://www.proquest.com/docview/2067507002
https://www.proquest.com/docview/2268076508
https://www.proquest.com/docview/2068343588
Volume 81
WOSCitedRecordID wos000478772200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZoCxIceJTSBkpkJG7UUvzYtc1ti1ohQaMoCyjisvL6QSPRTZRskbjz__hLjPeRHMgFLiNZtkarHc_MNxrPDEKvWZwZolNPypBwIqhIiHHcEJNQb5nx0ol22IQcj9VspiddHfe6f-3epyQbS70tdmuUc0RVfI4oiN5DB-DtVNTGaf5lY37hwrWYV4Oqg7_qU5m7WOyClX-lRBtPc_nov77xMXrYAUuctTfhCbrjq0N0rx01-fMQPbja9GddP0UhJx-9iaVSb3FW4cyZZTR7ZzizFvxQbB_hcF4v7LWJfZxxPr_pxnzh7Pu3xWpeX9-c4fNY7AU88O9fPTtsKoen_eoIfb68-PTuPekmLpAlwLyaQHRlhQ9OJSpNNYRGPFDGAnep1NQrZgKzsOuNctYIWTqIDhOnbck908EI_gztV4vKnyBMWShTYR2XJQhBuJJSb0ZhxEtBjUnCAJ32v77o1GZdxF7yAFDBSu_eZqkayYgpB-jVZhv0ISY5TOUXtw0LxQEDKjhz3Eq0WLaNOwpwvRBuJnyA3vTi2zLf9m-OMixAhkWUYaGf_9PpF-g-YCrdvhE8Rfv16ta_RHftj3q-Xg3RnpzJhqohOji_GE-msPogCdArNolUtjQHOkm-DpvL_QekR-tc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAgIOPMproYCR4EQt1o8kNhJC4VG12u0Ksa3UW3D8oJVodummoN75PfwV_hLjZLN7oOLWA8fI0SjJfP78TeyZAXjGY88QnXpahkRQyWRCjROGmoR5y43PnGybTWSjkdrf1x9X4FeXCxOPVXac2BC1m9j4j_xlLDOO2gUn8JvpNxq7RsXd1a6FRguLgT_9gSHb7PX2e_Tvc843P-y-26LzrgJ0ilKmphhBWOmDU4lKU43yXwTGeRAuzTTzipvALY56o5w1MisdRkCJ07YUnutgpEC7F-CiFCqLtfoHGV0wP2K9ldsaWQaXym4XtUnVa6ilz1Q8TCnpmYr2r93YZpHbvPG_fZ6bcH0up0ne4v8WrPhqDS63DTZP1-DazqIq7ew2hDEdehMTxF6RvCK5M9NI9hsktxZX31g0w5FxPbEHJlavJuPDo3lzM5J__YJvWx8cbZC3McUNbZDfPztzxFSOfOqu7sDeubzyXVitJpW_D4TxUKbSOpGV6H_pSsa86Ye-KCUzJgk9WO_cV8zJYlYsfXf2ME9VP4tKugdPF8PIAnFrx1R-ctKYUAKVr8J77rVgKqZtuZICBQcG2YnowYsOXUvjy6rVEZ8F4rOI-Cz0g38_6RO4srW7MyyG26PBQ7iKMlK3xyLXYbU-PvGP4JL9Xh_Ojh83U4TA5_MG3R9HZ0uL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB2VFhAcChQKoQWMxI1ajT921-a2FCIQJaoIoN5WXn_QSO0mSrZI3Pv_-pcYZ3eTA7lUHFe2RiuNx_NG43kP4A2PmiE69bQMiaCSyYQaJww1CfOWG5852YhNZMOhOj3VJ63O6bx77d61JJuZhsjSVNWHUxcOV4Nvi0DtMxWfJkqqb8GWjJpBsVwf_VxexXj4GvyrMewxd3VtzXUm1kHMf9qji6wzePDf__sQtlvASfLmhDyCDV_twJ1GgvLPDtz_uuRtnT-GMKLH3sQRqnckr0juzDRehwcktxbzU6SVcGRUT-yZifzOZDS-aOW_SH7-azIb12cXB-R9HAJDG-T6qjNHTOXIt-7rCfwYfPx-9Im2Sgx0ivCvplh1WemDU4lKU40lkwiM8yBcmmnmFTeBW1z1RjlrZFY6rBoTp20pPNfBSLELm9Wk8s-AMB7KVFonshIdIl3JmDf90BelZMYkoQf7nRuKNpzmReSYR-CKt_f6ZZ6qfhaxZg9eL5cxTmLzw1R-crkwoQRiQ4V7njbeLaYNoUeBKRnL0ET04G3nypXxFa9z9GGBPiyiDwv9_Ea7X8Hdkw-D4vjz8Mse3EPYpZtnhPuwWc8u_Qu4bX_X4_ns5eIE_wUfbu8O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S-Leaping%3A+An+Adaptive%2C+Accelerated+Stochastic+Simulation+Algorithm%2C+Bridging+%CF%84+-Leaping+and+R-Leaping&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Lipkov%C3%A1%2C+Jana&rft.au=Arampatzis%2C+Georgios&rft.au=Chatelain%2C+Philippe&rft.au=Menze%2C+Bjoern&rft.date=2019-08-01&rft.eissn=1522-9602&rft.volume=81&rft.issue=8&rft.spage=3074&rft_id=info:doi/10.1007%2Fs11538-018-0464-9&rft_id=info%3Apmid%2F29992453&rft.externalDocID=29992453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon