S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging τ-Leaping and R-Leaping
We propose the S -leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R -leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is...
Uloženo v:
| Vydáno v: | Bulletin of mathematical biology Ročník 81; číslo 8; s. 3074 - 3096 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0092-8240, 1522-9602, 1522-9602 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose the
S
-leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the
τ
-leaping and
R
-leaping algorithms. These algorithms are known to be efficient under different conditions; the
τ
-leaping is efficient for non-stiff systems or systems with partial equilibrium, while the
R
-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system’s set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the
τ
-leaping with the effective sampling procedure from the
R
-leaping algorithm. The
S
-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the
S
-leaping outperforms both methods. We demonstrate the performance and the accuracy of the
S
-leaping in comparison with the
τ
-leaping and
R
-leaping on a number of benchmark systems involving biological reaction networks. |
|---|---|
| AbstractList | We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the
-leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the
-leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system's set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the
-leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the
-leaping and R-leaping on a number of benchmark systems involving biological reaction networks. We propose the S-leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ-leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the τ-leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system’s set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ-leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the τ-leaping and R-leaping on a number of benchmark systems involving biological reaction networks. We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system's set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ -leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the τ -leaping and R-leaping on a number of benchmark systems involving biological reaction networks.We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R-leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R-leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system's set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ -leaping with the effective sampling procedure from the R-leaping algorithm. The S-leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S-leaping outperforms both methods. We demonstrate the performance and the accuracy of the S-leaping in comparison with the τ -leaping and R-leaping on a number of benchmark systems involving biological reaction networks. We propose the S -leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated methods; the τ -leaping and R -leaping algorithms. These algorithms are known to be efficient under different conditions; the τ -leaping is efficient for non-stiff systems or systems with partial equilibrium, while the R -leaping performs better in stiff system thanks to an efficient sampling procedure. However, even a small change in a system’s set up can critically affect the nature of the simulated system and thus reduce the efficiency of an accelerated algorithm. The proposed algorithm combines the efficient time step selection from the τ -leaping with the effective sampling procedure from the R -leaping algorithm. The S -leaping is shown to maintain its efficiency under different conditions and in the case of large and stiff systems or systems with fast dynamics, the S -leaping outperforms both methods. We demonstrate the performance and the accuracy of the S -leaping in comparison with the τ -leaping and R -leaping on a number of benchmark systems involving biological reaction networks. |
| Author | Koumoutsakos, Petros Menze, Bjoern Lipková, Jana Arampatzis, Georgios Chatelain, Philippe |
| Author_xml | – sequence: 1 givenname: Jana surname: Lipková fullname: Lipková, Jana organization: Department of Informatics, Technical University of Munich – sequence: 2 givenname: Georgios surname: Arampatzis fullname: Arampatzis, Georgios organization: Computational Science and Engineering Laboratory, ETH Zurich – sequence: 3 givenname: Philippe surname: Chatelain fullname: Chatelain, Philippe organization: Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain – sequence: 4 givenname: Bjoern surname: Menze fullname: Menze, Bjoern organization: Department of Informatics, Technical University of Munich – sequence: 5 givenname: Petros orcidid: 0000-0001-8337-2122 surname: Koumoutsakos fullname: Koumoutsakos, Petros email: petros@ethz.ch organization: Computational Science and Engineering Laboratory, ETH Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29992453$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kclqHDEQhkWwscfLA-QSBL7k4LZLpaUl38YmGwwYPMlZaFrqsUxvbnUHcs_75ZUiMx4CPuRQFEV99VNV_wk56PouEPKewRUDKK8TY5LrAlgOoURh3pEFk4iFUYAHZAFgsNAo4JicpPQEecZwc0SO0RiDQvIFqdfFKrghdtsbuuzo0rthij_DJV1WVWjC6Kbg6Xrqq0eXpljRdWznxk2xz2yz7cc4PbaX9HaMfps16J_feznqOk8f9tUZOaxdk8L5az4lPz5_-n73tVjdf_l2t1wVA2cwFUyISoTaa6mVMgolrxlizb0qDQsaXY1V7ganfeVEufECjPSm2vCApnaCn5KPO91h7J_nkCbbxpQPaVwX-jlZBKW54FLrjF68QZ_6eezydhZRaSiVhP9ToEoJJQBm6sMrNW_a4O0wxtaNv-z-zxnAHZByq9uG8Z8MA_tipt2ZabOZ9sVMa_hfgOKPZQ |
| ContentType | Journal Article |
| Copyright | Society for Mathematical Biology 2018 Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved. Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Society for Mathematical Biology 2018 – notice: Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved. – notice: Copyright Springer Nature B.V. 2019 |
| DBID | CGR CUY CVF ECM EIF NPM 3V. 7SS 7TK 7X7 7XB 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M2P M7P M7S P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
| DOI | 10.1007/s11538-018-0464-9 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection ProQuest Medical Database Science Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Computer Science Database Entomology Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Mathematics |
| EISSN | 1522-9602 |
| EndPage | 3096 |
| ExternalDocumentID | 29992453 10_1007_s11538_018_0464_9 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: H2020 European Research Council grantid: 341117 funderid: http://dx.doi.org/10.13039/100010663 |
| GroupedDBID | --- --Z -52 -5D -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5RE 5VS 67Z 6J9 6NX 78A 7X7 88A 8FH 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AACTN AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHHHB AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K7- KDC KOV LLZTM M0L M4Y M7P MA- NB0 NF0 NPVJJ NQJWS NU0 O-L O93 O9G O9I O9J P19 P2P P9R PF0 PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XSW YLTOR Z45 Z7U Z83 ZMTXR ~A9 ~EX ~KM --K -Y2 .GJ 1B1 1RT 1~5 2.D 28- 2VQ 3O- 4G. 53G 7-5 71M 88E 8AO 8FE 8FG 8FI 8FJ AAAVM AAEDT AALCJ AALRI AAPKM AAQFI AAQXK AARHV AAXUO AAYTO ABDBE ABJCF ABMAC ABQSL ABULA ABUWG ABWVN ACBXY ACRPL ADFGL ADHKG ADMUD ADNMO AEBTG AEKMD AFEXP AFGCZ AFKRA AGGDS AI. AITUG AJBLW ARAPS AYFIA BBWZM BGLVJ BVXVI CAG CCPQU CGR COF CUY CVF DM4 ECM EIF FGOYB FIRID G-2 H13 HLV HMCUK IHE K6V L6V LG5 LK8 LW8 M1P M7S N2Q NDZJH NPM O9- OZT P62 PHGZT PQQKQ PSQYO PTHSS R2- RIG RNI RPZ RZK S1Z S26 S28 SAB SCLPG SEW SSZ T16 UKHRP VH1 WUQ XPP ZGI ZMT ZWQNP ZXP 7SS 7TK 7XB 8FK ABBRH ABFSG ABRTQ ABUFD ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AZQEC DWQXO GNUQQ JQ2 K9. M2P PHGZM PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-p310t-144c4efd8586696253f122f3d6791e82af2cfd8ea8dca47bd4095d9cb3e29fa43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478772200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0092-8240 1522-9602 |
| IngestDate | Fri Sep 05 08:24:20 EDT 2025 Thu Dec 04 04:06:25 EST 2025 Tue Oct 07 05:35:18 EDT 2025 Sun Mar 30 01:29:35 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Stochastic simulation algorithms Stiff systems Accelerated simulation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p310t-144c4efd8586696253f122f3d6791e82af2cfd8ea8dca47bd4095d9cb3e29fa43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8337-2122 |
| PMID | 29992453 |
| PQID | 2067507002 |
| PQPubID | 55445 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_2068343588 proquest_journals_2268076508 proquest_journals_2067507002 pubmed_primary_29992453 springer_journals_10_1007_s11538_018_0464_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | A Journal Devoted to Research at the Junction of Computational, Theoretical and Experimental Biology Official Journal of The Society for Mathematical Biology |
| PublicationTitle | Bulletin of mathematical biology |
| PublicationTitleAbbrev | Bull Math Biol |
| PublicationTitleAlternate | Bull Math Biol |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | CaoYGillespieDTPetzoldLRAvoiding negative populations in explicit poisson tau-leapingJ Chem Phys2005123505410410.1063/1.1992473 GillespieDTExact stochastic simulation of coupled chemical reactionsJ Phys Chem197781252340236110.1021/j100540a008 CaoYGillespieDTPetzoldLRAdaptive explicit–implicit tau-leaping method with automatic tau selectionJ Chem Phys20071262222410110.1063/1.2745299 KoumoutsakosPFeigelmanJMultiscale stochastic simulations of chemical reactions with regulated scale separationJ Comput Phys2013244290297306422010.1016/j.jcp.2012.11.0301377.80003 AndersonDFKurtzTGContinuous time Markov chain models for chemical reaction networks2011New YorkSpringer342 MaamarHRajADubnauDNoise in gene expression determines cell fate in Bacillus subtilisScience2007317583752652910.1126/science.1140818 GillespieDTApproximate accelerated stochastic simulation of chemically reacting systemsJ Chem Phys2001115171610.1063/1.1378322 Erban R, Chapman J, Maini P (2007) A practical guide to stochastic simulations of reaction-diffusion processes. arXiv:0704.1908 MjolsnessEOrendorffDChatelainPKoumoutsakosPAn exact accelerated stochastic simulation algorithmJ Chem Phys200913014411010.1063/1.3078490 LipkovaJZygalakisKCChapmanSJErbanRAnalysis of Brownian dynamics simulations of reversible bimolecular reactionsSIAM J Appl Math2011713714730279608610.1137/1007942131229.80023 GillespieDTPetzoldLRImproved leap-size selection for accelerated stochastic simulationJ Chem Phys2003119822910.1063/1.1613254 BayatiBOwhadiHKoumoutsakosPA cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA)J Chem Phys2010133241710.1063/1.3518419 KierzekAMSTOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithmBioinformatics (Oxford, England)200218347048110.1093/bioinformatics/18.3.470 CaoYPetzoldLRAccuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systemsJ Comput Phys20062121624218360310.1016/j.jcp.2005.06.0121079.80003 Sandmann W (2009) Exposition and streamlined formulation of adaptive explicitimplicit tau-leaping. Technical report, Citeseer ErbanRChapmanSJStochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactionsPhys Biology20096404600110.1088/1478-3975/6/4/046001 CaoYGillespieDPetzoldLMultiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systemsJ Comput Phys20052062395411214332410.1016/j.jcp.2004.12.0141088.80004 RathinamMPetzoldLRCaoYGillespieDTStiffness in stochastic chemically reacting systems: the implicit tau-leaping methodJ Chem Phys20031191278410.1063/1.1627296 SüelGMGarcia-OjalvoJLibermanLMElowitzMBAn excitable gene regulatory circuit induces transient cellular differentiationNature2006440708354555010.1038/nature04588 TianTBurrageKBinomial leap methods for simulating stochastic chemical kineticsJ Chem Phys20041211035610.1063/1.1810475 AugerAChatelainPKoumoutsakosPR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-leaping: accelerating the stochastic simulation algorithm by reaction leapsJ Chem Phys2006125808410310.1063/1.2218339 BayatiBChatelainPKoumoutsakosPAdaptive mesh refinement for stochastic reaction–diffusion processesJ Comput Phys201123011326273427910.1016/j.jcp.2010.08.0351205.65020 ChattopadhyayIKuchinaASüelGMLipsonHInverse gillespie for inferring stochastic reaction mechanisms from intermittent samplesProc Natl Acad Sci2013110321299012995310435710.1073/pnas.12145591101292.62142 CaoYGillespieDPetzoldLEfficient step size selection for the tau-leaping simulation methodJ Chem Phys2006124404410910.1063/1.2159468 GillespieDTA general method for numerically simulating the stochastic time evolution of coupled chemical reactionsJ Comput Phys197622440343450337010.1016/0021-9991(76)90041-3 |
| References_xml | – reference: TianTBurrageKBinomial leap methods for simulating stochastic chemical kineticsJ Chem Phys20041211035610.1063/1.1810475 – reference: AndersonDFKurtzTGContinuous time Markov chain models for chemical reaction networks2011New YorkSpringer342 – reference: GillespieDTExact stochastic simulation of coupled chemical reactionsJ Phys Chem197781252340236110.1021/j100540a008 – reference: KierzekAMSTOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithmBioinformatics (Oxford, England)200218347048110.1093/bioinformatics/18.3.470 – reference: BayatiBOwhadiHKoumoutsakosPA cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA)J Chem Phys2010133241710.1063/1.3518419 – reference: ErbanRChapmanSJStochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactionsPhys Biology20096404600110.1088/1478-3975/6/4/046001 – reference: CaoYPetzoldLRAccuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systemsJ Comput Phys20062121624218360310.1016/j.jcp.2005.06.0121079.80003 – reference: MaamarHRajADubnauDNoise in gene expression determines cell fate in Bacillus subtilisScience2007317583752652910.1126/science.1140818 – reference: LipkovaJZygalakisKCChapmanSJErbanRAnalysis of Brownian dynamics simulations of reversible bimolecular reactionsSIAM J Appl Math2011713714730279608610.1137/1007942131229.80023 – reference: RathinamMPetzoldLRCaoYGillespieDTStiffness in stochastic chemically reacting systems: the implicit tau-leaping methodJ Chem Phys20031191278410.1063/1.1627296 – reference: Erban R, Chapman J, Maini P (2007) A practical guide to stochastic simulations of reaction-diffusion processes. arXiv:0704.1908 – reference: Sandmann W (2009) Exposition and streamlined formulation of adaptive explicitimplicit tau-leaping. Technical report, Citeseer – reference: BayatiBChatelainPKoumoutsakosPAdaptive mesh refinement for stochastic reaction–diffusion processesJ Comput Phys201123011326273427910.1016/j.jcp.2010.08.0351205.65020 – reference: AugerAChatelainPKoumoutsakosPR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-leaping: accelerating the stochastic simulation algorithm by reaction leapsJ Chem Phys2006125808410310.1063/1.2218339 – reference: CaoYGillespieDTPetzoldLRAdaptive explicit–implicit tau-leaping method with automatic tau selectionJ Chem Phys20071262222410110.1063/1.2745299 – reference: SüelGMGarcia-OjalvoJLibermanLMElowitzMBAn excitable gene regulatory circuit induces transient cellular differentiationNature2006440708354555010.1038/nature04588 – reference: ChattopadhyayIKuchinaASüelGMLipsonHInverse gillespie for inferring stochastic reaction mechanisms from intermittent samplesProc Natl Acad Sci2013110321299012995310435710.1073/pnas.12145591101292.62142 – reference: KoumoutsakosPFeigelmanJMultiscale stochastic simulations of chemical reactions with regulated scale separationJ Comput Phys2013244290297306422010.1016/j.jcp.2012.11.0301377.80003 – reference: MjolsnessEOrendorffDChatelainPKoumoutsakosPAn exact accelerated stochastic simulation algorithmJ Chem Phys200913014411010.1063/1.3078490 – reference: GillespieDTApproximate accelerated stochastic simulation of chemically reacting systemsJ Chem Phys2001115171610.1063/1.1378322 – reference: GillespieDTPetzoldLRImproved leap-size selection for accelerated stochastic simulationJ Chem Phys2003119822910.1063/1.1613254 – reference: CaoYGillespieDTPetzoldLRAvoiding negative populations in explicit poisson tau-leapingJ Chem Phys2005123505410410.1063/1.1992473 – reference: CaoYGillespieDPetzoldLEfficient step size selection for the tau-leaping simulation methodJ Chem Phys2006124404410910.1063/1.2159468 – reference: CaoYGillespieDPetzoldLMultiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systemsJ Comput Phys20052062395411214332410.1016/j.jcp.2004.12.0141088.80004 – reference: GillespieDTA general method for numerically simulating the stochastic time evolution of coupled chemical reactionsJ Comput Phys197622440343450337010.1016/0021-9991(76)90041-3 |
| SSID | ssj0007939 |
| Score | 2.2452278 |
| Snippet | We propose the
S
-leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main... We propose the S-leaping algorithm for the acceleration of Gillespie's stochastic simulation algorithm that combines the advantages of the two main accelerated... We propose the S-leaping algorithm for the acceleration of Gillespie’s stochastic simulation algorithm that combines the advantages of the two main accelerated... |
| SourceID | proquest pubmed springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3074 |
| SubjectTerms | Acceleration Adaptive algorithms Algorithms Bacillus subtilis - genetics Bacillus subtilis - metabolism Biochemical Phenomena Cell Biology Computer Simulation Dimerization Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Kinetics Lac Operon Life Sciences Markov Chains Mathematical and Computational Biology Mathematical Concepts Mathematics Mathematics and Statistics Models, Biological Monosaccharide Transport Proteins - genetics Monosaccharide Transport Proteins - metabolism Sampling Special Issue: Gillespie and His Algorithms Stochastic Processes Symporters - genetics Symporters - metabolism Systems Biology |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VWqT2QHm0dIEiI3ErVtePJDYXFKoiDhShbitxixw_ClLJLmyo1Hv_X_8S4zx2DyAuHCNHY8uexzee8QzAHo89Q3TqaRkSQSWTCTVOGGoS5i03PnOybTaRnZ2piwt93l24Tbu0yl4nNorajW28I_8cy4wjdkEBPpzc0Ng1KkZXuxYaC_AyVkkQTere-UwTI--18Fej1KPp6qOazdO5RtSHTMXkRkkfRZgPoqON0Tl--9zlrsByBzdJ3vLHKrzw1RostQ0o_67Bm2-zqq3TdQgjeupNfEB1QPKK5M5MojLcJ7m1aJ1iUQlHRvXYXppY3ZmMrq675l8k__0LZ68vr_fJUXwChjTI_389OWIqR773X-_g5_HXH19OaNeHgU4Q_NUUfS4rfXAqUWmq0WESgXEehEszzbziJnCLo94oZ43MSoc-Y-K0LYXnOhgp3sNiNa78ByCMhzKV1omsxPOQrmTMm2EYilIyY5IwgO1-O4tOmKbFfC8fH-apGmYRaQ5gdzaMUhJDH6by47uGhBKIDBX-s9EebjFpy3kUaJDRCU3EAD71pz0nPq_qHPmlQH4pIr8UevPplW7Ba4RWuk0V3IbF-vbOf4RX9k99Nb3dadj0Hmfv7aU priority: 102 providerName: ProQuest |
| Title | S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging τ-Leaping and R-Leaping |
| URI | https://link.springer.com/article/10.1007/s11538-018-0464-9 https://www.ncbi.nlm.nih.gov/pubmed/29992453 https://www.proquest.com/docview/2067507002 https://www.proquest.com/docview/2268076508 https://www.proquest.com/docview/2068343588 |
| Volume | 81 |
| WOSCitedRecordID | wos000478772200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1522-9602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007939 issn: 0092-8240 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZoCxIceJTSBkpkJG7UUvzYtc1ti1ohQaMoCyjisvL6QSPRTZRskbjz__hLjPeRHMgFLiNZtkarHc_MNxrPDEKvWZwZolNPypBwIqhIiHHcEJNQb5nx0ol22IQcj9VspiddHfe6f-3epyQbS70tdmuUc0RVfI4oiN5DB-DtVNTGaf5lY37hwrWYV4Oqg7_qU5m7WOyClX-lRBtPc_nov77xMXrYAUuctTfhCbrjq0N0rx01-fMQPbja9GddP0UhJx-9iaVSb3FW4cyZZTR7ZzizFvxQbB_hcF4v7LWJfZxxPr_pxnzh7Pu3xWpeX9-c4fNY7AU88O9fPTtsKoen_eoIfb68-PTuPekmLpAlwLyaQHRlhQ9OJSpNNYRGPFDGAnep1NQrZgKzsOuNctYIWTqIDhOnbck908EI_gztV4vKnyBMWShTYR2XJQhBuJJSb0ZhxEtBjUnCAJ32v77o1GZdxF7yAFDBSu_eZqkayYgpB-jVZhv0ISY5TOUXtw0LxQEDKjhz3Eq0WLaNOwpwvRBuJnyA3vTi2zLf9m-OMixAhkWUYaGf_9PpF-g-YCrdvhE8Rfv16ta_RHftj3q-Xg3RnpzJhqohOji_GE-msPogCdArNolUtjQHOkm-DpvL_QekR-tc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAgIOPMproYCR4EQt1o8kNhJC4VG12u0Ksa3UW3D8oJVodummoN75PfwV_hLjZLN7oOLWA8fI0SjJfP78TeyZAXjGY88QnXpahkRQyWRCjROGmoR5y43PnGybTWSjkdrf1x9X4FeXCxOPVXac2BC1m9j4j_xlLDOO2gUn8JvpNxq7RsXd1a6FRguLgT_9gSHb7PX2e_Tvc843P-y-26LzrgJ0ilKmphhBWOmDU4lKU43yXwTGeRAuzTTzipvALY56o5w1MisdRkCJ07YUnutgpEC7F-CiFCqLtfoHGV0wP2K9ldsaWQaXym4XtUnVa6ilz1Q8TCnpmYr2r93YZpHbvPG_fZ6bcH0up0ne4v8WrPhqDS63DTZP1-DazqIq7ew2hDEdehMTxF6RvCK5M9NI9hsktxZX31g0w5FxPbEHJlavJuPDo3lzM5J__YJvWx8cbZC3McUNbZDfPztzxFSOfOqu7sDeubzyXVitJpW_D4TxUKbSOpGV6H_pSsa86Ye-KCUzJgk9WO_cV8zJYlYsfXf2ME9VP4tKugdPF8PIAnFrx1R-ctKYUAKVr8J77rVgKqZtuZICBQcG2YnowYsOXUvjy6rVEZ8F4rOI-Cz0g38_6RO4srW7MyyG26PBQ7iKMlK3xyLXYbU-PvGP4JL9Xh_Ojh83U4TA5_MG3R9HZ0uL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB2VFhAcChQKoQWMxI1ajT921-a2FCIQJaoIoN5WXn_QSO0mSrZI3Pv_-pcYZ3eTA7lUHFe2RiuNx_NG43kP4A2PmiE69bQMiaCSyYQaJww1CfOWG5852YhNZMOhOj3VJ63O6bx77d61JJuZhsjSVNWHUxcOV4Nvi0DtMxWfJkqqb8GWjJpBsVwf_VxexXj4GvyrMewxd3VtzXUm1kHMf9qji6wzePDf__sQtlvASfLmhDyCDV_twJ1GgvLPDtz_uuRtnT-GMKLH3sQRqnckr0juzDRehwcktxbzU6SVcGRUT-yZifzOZDS-aOW_SH7-azIb12cXB-R9HAJDG-T6qjNHTOXIt-7rCfwYfPx-9Im2Sgx0ivCvplh1WemDU4lKU40lkwiM8yBcmmnmFTeBW1z1RjlrZFY6rBoTp20pPNfBSLELm9Wk8s-AMB7KVFonshIdIl3JmDf90BelZMYkoQf7nRuKNpzmReSYR-CKt_f6ZZ6qfhaxZg9eL5cxTmLzw1R-crkwoQRiQ4V7njbeLaYNoUeBKRnL0ET04G3nypXxFa9z9GGBPiyiDwv9_Ea7X8Hdkw-D4vjz8Mse3EPYpZtnhPuwWc8u_Qu4bX_X4_ns5eIE_wUfbu8O |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S-Leaping%3A+An+Adaptive%2C+Accelerated+Stochastic+Simulation+Algorithm%2C+Bridging+%CF%84+-Leaping+and+R-Leaping&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Lipkov%C3%A1%2C+Jana&rft.au=Arampatzis%2C+Georgios&rft.au=Chatelain%2C+Philippe&rft.au=Menze%2C+Bjoern&rft.date=2019-08-01&rft.eissn=1522-9602&rft.volume=81&rft.issue=8&rft.spage=3074&rft_id=info:doi/10.1007%2Fs11538-018-0464-9&rft_id=info%3Apmid%2F29992453&rft.externalDocID=29992453 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon |