Photocatalytic CO2‐to‐Syngas Evolution with Molecular Catalyst Metal‐Organic Framework Nanozymes
Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight‐driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 35; H. 6; S. e2207380 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
Wiley Subscription Services, Inc
01.02.2023
|
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight‐driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State‐of‐the‐art catalytic systems and materials often fall short as application‐oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light‐harvesting metal‐organic framework hosting two molecular catalysts is engineered to yield colloidal, water‐stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In‐depth fluorescence, X‐ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all‐in‐one material toward application in solar energy‐driven syngas generation.
Highly active, durable, and selective catalysts for light‐driven CO2 and water conversion to value‐adding products are key toward a sustainable energy cycle. Such an all‐in‐one material is showcased, consisting of a metal‐organic framework co‐hosting two molecular catalysts. This assembly (nanozyme) harvests light, funnels energy to molecular sites, and enhances charge separation, thereby unlocking high photon efficiencies and adjustable syngas evolution. |
|---|---|
| AbstractList | Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight‐driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State‐of‐the‐art catalytic systems and materials often fall short as application‐oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light‐harvesting metal‐organic framework hosting two molecular catalysts is engineered to yield colloidal, water‐stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In‐depth fluorescence, X‐ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all‐in‐one material toward application in solar energy‐driven syngas generation. Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight‐driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State‐of‐the‐art catalytic systems and materials often fall short as application‐oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light‐harvesting metal‐organic framework hosting two molecular catalysts is engineered to yield colloidal, water‐stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In‐depth fluorescence, X‐ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all‐in‐one material toward application in solar energy‐driven syngas generation. Highly active, durable, and selective catalysts for light‐driven CO2 and water conversion to value‐adding products are key toward a sustainable energy cycle. Such an all‐in‐one material is showcased, consisting of a metal‐organic framework co‐hosting two molecular catalysts. This assembly (nanozyme) harvests light, funnels energy to molecular sites, and enhances charge separation, thereby unlocking high photon efficiencies and adjustable syngas evolution. Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation. |
| Author | Stanley, Philip M. Elsner, Martin Rieger, Bernhard Fink, Pascal Kimna, Ceren Lieleg, Oliver Lercher, Johannes A. Fischer, Roland A. Su, Alice Y. Ramm, Vanessa Warnan, Julien |
| Author_xml | – sequence: 1 givenname: Philip M. orcidid: 0000-0002-1951-4074 surname: Stanley fullname: Stanley, Philip M. organization: Technical University of Munich – sequence: 2 givenname: Alice Y. surname: Su fullname: Su, Alice Y. organization: Technical University of Munich – sequence: 3 givenname: Vanessa surname: Ramm fullname: Ramm, Vanessa organization: Technical University of Munich – sequence: 4 givenname: Pascal surname: Fink fullname: Fink, Pascal organization: Technical University of Munich – sequence: 5 givenname: Ceren surname: Kimna fullname: Kimna, Ceren organization: Technical University of Munich – sequence: 6 givenname: Oliver surname: Lieleg fullname: Lieleg, Oliver organization: Technical University of Munich – sequence: 7 givenname: Martin surname: Elsner fullname: Elsner, Martin organization: Technical University of Munich – sequence: 8 givenname: Johannes A. surname: Lercher fullname: Lercher, Johannes A. organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Bernhard surname: Rieger fullname: Rieger, Bernhard organization: Technical University of Munich – sequence: 10 givenname: Julien surname: Warnan fullname: Warnan, Julien email: julien.warnan@tum.de organization: Technical University of Munich – sequence: 11 givenname: Roland A. orcidid: 0000-0002-7532-5286 surname: Fischer fullname: Fischer, Roland A. email: roland.fischer@tum.de organization: Technical University of Munich |
| BookMark | eNpdkEtLw0AUhQdRsK1uXQfcuEm980xmWWqrgrWCug7X6USjSaZmEktc-RP8jf4Sxwcu3NwHfOdwOEOyXbvaEnJAYUwB2DGuKhwzYAwSnsIWGVDJaCxAy20yAM1lrJVId8nQ-0cA0ArUgORXD651Blss-7Yw0XTJPt7eWxfGdV_fo49mL67s2sLV0aZoH6KFK63pSmyi6bfIt9HChiMIls091sFj3mBlN655ii6xdq99Zf0e2cmx9Hb_d4_I7Xx2Mz2LL5an59PJRbzmoCAWdygTzlFJTFcKuEmosFZzkeaSMi1tnuY8NToVyiR3UueMoVlRRGGEsivgI3L047tu3HNnfZtVhTe2LLG2rvMZS3giEgpKBPTwH_rouqYO6QIVICalpIHSP9SmKG2frZuiwqbPKGRfnWdfnWd_nWeTk8Xk7-OffpB83Q |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
| DBID | 24P 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202207380 |
| DatabaseName | Wiley Online Library Open Access Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | ADMA202207380 |
| Genre | article |
| GrantInformation_xml | – fundername: Fonds der Chemischen Industrie funderid: Fellowship – fundername: German Research Foundation (DFG) funderid: FI502/43‐1; SPP1928; EXC2089 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
| ID | FETCH-LOGICAL-p3060-4ba5733a65a8d603c714ee9348f51295ef8f38c9846c7b59f22acd1aa4c46ed03 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899401000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 11:46:57 EDT 2025 Sun Nov 09 08:31:41 EST 2025 Wed Jan 22 16:16:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p3060-4ba5733a65a8d603c714ee9348f51295ef8f38c9846c7b59f22acd1aa4c46ed03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1951-4074 0000-0002-7532-5286 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207380 |
| PQID | 2774725551 |
| PQPubID | 2045203 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2737471064 proquest_journals_2774725551 wiley_primary_10_1002_adma_202207380_ADMA202207380 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 8 2017; 2 2020; 120 2019; 58 1983; 9 2020; 13 1982; 104 2020; 56 2011; 12 1996; 35 2013; 6 2017; 9 2014; 136 2020; 5 1981; 81 2019; 119 2021; 231 2014; 50 2014; 11 2016; 45 2017; 20 2019; 9 2021; 6 2015; 6 2021; 4 2015; 3 2020; 142 2010 2013; 46 2019; 1 2013; 42 2015; 54 1940; 32 2005 2021; 141 2013; 341 2002 2015; 8 1998; 453 2011; 133 2017; 139 2016; 55 2021; 14 2017; 50 2021; 13 2010; 49 2021; 11 2022 2019; 48 2017; 56 2022; 13 2013; 135 2015 2016; 138 2018; 12 2021; 60 2018; 10 2009; 39 |
| References_xml | – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 56 start-page: 8166 year: 2020 publication-title: Chem. Commun. – volume: 49 start-page: 9283 year: 2010 publication-title: Inorg. Chem. – volume: 81 start-page: 447 year: 1981 publication-title: Chem. Rev. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 3952 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 119 start-page: 2752 year: 2019 publication-title: Chem. Rev. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2216 year: 2019 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1686 year: 2018 publication-title: ChemCatChem – volume: 12 start-page: 5333 year: 2018 publication-title: ACS Nano – volume: 14 start-page: 4260 year: 2021 publication-title: Energies – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2710 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 536 year: 1983 publication-title: J. Chem. Soc., Chem. Commun. – volume: 5 year: 2020 publication-title: ACS Omega – volume: 8 year: 2017 publication-title: Nat. Commun. – year: 2022 publication-title: Adv. Mater. – volume: 453 start-page: 161 year: 1998 publication-title: J. Electroanal. Chem. – volume: 341 year: 2013 publication-title: Science – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 404 year: 2020 publication-title: Energy Environ. Sci. – volume: 138 start-page: 7443 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 364 year: 2015 publication-title: Energy Environ. Sci. – start-page: 115 year: 2010 – volume: 2 start-page: 1886 year: 2017 publication-title: ACS Energy Lett. – volume: 104 start-page: 4803 year: 1982 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2022 publication-title: Chem. Sci. – volume: 20 start-page: 283 year: 2017 publication-title: C. R. Chim. – volume: 142 start-page: 9428 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 1768 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 1643 year: 2009 publication-title: Clin. Exp. Allergy – year: 2015 – volume: 13 start-page: 358 year: 2021 publication-title: Nat. Chem. – volume: 46 start-page: 346 year: 2013 publication-title: J. Appl. Crystallogr. – volume: 50 start-page: 616 year: 2017 publication-title: Acc. Chem. Res. – volume: 1 start-page: 94 year: 2019 publication-title: Nanoscale Adv. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 141 year: 2021 publication-title: Renew. Sust. Energy Rev. – volume: 9 start-page: 3198 year: 2019 publication-title: ACS Catal. – volume: 142 start-page: 690 year: 2020 publication-title: J. Am. Chem. Soc. – start-page: 4723 year: 2005 publication-title: Chem. Commun. – volume: 4 year: 2021 publication-title: Adv. Energy Mater. – volume: 120 start-page: 919 year: 2020 publication-title: Chem. Rev. – volume: 54 start-page: 5096 year: 2015 publication-title: Inorg. Chem. – volume: 4 start-page: 719 year: 2021 publication-title: Nat. Catal. – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 6 start-page: 848 year: 2021 publication-title: ACS Energy Lett. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 871 year: 2021 publication-title: ACS Catal. – volume: 32 start-page: 449 year: 1940 publication-title: Ind. Eng. Chem. – volume: 8 start-page: 2825 year: 2015 publication-title: Energy Environ. Sci. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2014 publication-title: J. R. Soc. Interface – volume: 35 start-page: 2898 year: 1996 publication-title: Inorg. Chem. – volume: 56 start-page: 976 year: 2017 publication-title: Angew. Chem., Int. Ed. – year: 2002 – volume: 12 start-page: 2236 year: 2011 publication-title: Org. Electron. – volume: 231 start-page: 281 year: 2021 publication-title: Faraday Discuss. – volume: 6 start-page: 2727 year: 2015 publication-title: Chem. Sci. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 2338 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 1983 year: 2013 publication-title: Energy Environ. Sci. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 6732 year: 2016 publication-title: Dalton Trans. |
| SSID | ssj0009606 |
| Score | 2.5926087 |
| Snippet | Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon... Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| StartPage | e2207380 |
| SubjectTerms | Ammonia Carbon dioxide carbon dioxide reduction Catalysts Catalytic converters Controllability Hydrocarbon fuels Hydrogen evolution Materials science metal‐organic frameworks molecular catalysts nanozyme Photocatalysis Selectivity Solar energy syngas Synthesis gas |
| Title | Photocatalytic CO2‐to‐Syngas Evolution with Molecular Catalyst Metal‐Organic Framework Nanozymes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207380 https://www.proquest.com/docview/2774725551 https://www.proquest.com/docview/2737471064 |
| Volume | 35 |
| WOSCitedRecordID | wos000899401000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQywADb0ShVEZijVo7TuKMVR9ioKUCKnWLbMcBBhJE0kpl4ifwG_klnJ2-WGFxEsUnRZe783d-fIfQdeCxRBKz6p8EvsOk5A70JA6nzFUKxjylpC02EQyHfDIJRxun-Et-iNWEm_EMG6-NgwuZN9ekoSK2vEGUgpFySNqrhMDVcDuz0Zp217fVNc1qnxP6jC9pG1u0-Vv-F8DchKl2nOnv__8LD9DeAmPidmkUh2hLp0dod4N58Bglo-esyOzczRx64c4d_f78KjJoHubpk8hxb7YwSmymavFgWUYXd6xQXuCBhhsQKI9zKtxf7vPCELKzj_mrzk_QuN977Nw4i5ILzhvkDi34WcIQJArfEzz2W64KCNM6dBlPDDLwdMITl6sQUIsKpBcmlAoVEyGYYr6OW-4pqqRZqs8Q9uKQE-FC6g0ZpJRUAhT1aKAhRsSEa6-G6kuNRwu_ySMKaDSALMcjNXS1eg0Wb5YxRKqzqenjmkwasFQNUav_6K1k5ohKDmYaGc1HK81H7e6gvXo6_4vQBdoxdebL7dp1VCnep_oSbatZ8ZK_N6zNQRtMeANVu_f98e0PoeTdBA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA-ignrwvzidGsFr2ZqmbXocc2PiNgdO2K2kaaoebMfaDebJj-Bn9JP4knbddhUvpSXvQUneS37vJfk9hO5cm0aBqXb9I9cxaBAwAyRNgxFqCQFrnhCBLjbh9vtsNPIGxWlCdRcm54coE27KM_R8rRxcJaRrS9ZQHmriIELAShlE7VsUlhpl6oQOlry7ji6vqbb7DM-hbMHbWCe1df01hLmKU_VC0z74h188RPsFysSN3CyO0IaMj9HeCvfgCYoGb0mW6OzNHKRw84n8fH1nCTye5_ErT3FrVpglVsla3FsU0sVNrZRmuCfhBRTyC50CtxcnvTBM2snn_EOmp-il3Ro2O0ZRdMEYQ_RQh-HiiiKROzZnoVO3hGtSKT2LskhhA1tGLLKY8AC3CDewvYgQLkKTcyqoI8O6dYY24ySW5wjbocdMbkHwDTFkEJAAwKhNXAmzRGgyaVdQddHlfuE5qU8Aj7oQ59hmBd2WzWDzaiODxzKZKhlLxdKApiqI6AHwxzk3h5-zMBNf9bxf9rzfuO81yq-LvyjdoJ3OsNf1uw_9x0u0q6rO54e3q2gzm0zlFdoWs-w9nVxrA_wFs93eZw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT4MwEL-YaYw--N84nVoTX4mjFCiPyzai0c1FXbI3UkpRH4RF0GQ--RH8jH4Sr8A292p8IRB6hLR319-1198BnLs2i0NT7_rHrmOwMOQGtjQNTpklJc55UoZFsQm33-ejkTeosgn1WZiSH2K24KYto_DX2sDVOIov5qyhIiqIgyhFLeUYtS8zXUmmBsudO394M2fedYoCm3rDz_AcxqfMjU16sfiFBYz5G6kWU42_-Q8_uQUbFc4krVIxtmFJJTuw_ot9cBfiwVOap8X6zQRbkfYt_f78ylO83E-SR5GR7nulmEQv15LetJQuaRdCWU56Cm9QoDzSKYk_zfUi6LbTj8mLyvZg6Hcf2pdGVXbBGGP80MQBE5okUTi24JHTtKRrMqU8i_FYowNbxTy2uPQQuUg3tL2YUiEjUwgmmaOiprUPtSRN1AEQO_K4KSwMvzGKDEMaIhy1qavQT0QmV3YdGtMuDyrbyQKKiNTFSMc263A2e41ar7cyRKLSN93G0tE04qk60GIAgnHJzhGUPMw00D0fzHo-aHV6rdnT4V-ETmF10PGDm6v-9RGs6bLzZfZ2A2r565s6hhX5nj9nryeVBv4AhXrffQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+CO2+-to-Syngas+Evolution+with+Molecular+Catalyst+Metal-Organic+Framework+Nanozymes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Stanley%2C+Philip+M&rft.au=Su%2C+Alice+Y&rft.au=Ramm%2C+Vanessa&rft.au=Fink%2C+Pascal&rft.date=2023-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=6&rft.spage=e2207380&rft_id=info:doi/10.1002%2Fadma.202207380&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |