Photocatalytic CO2‐to‐Syngas Evolution with Molecular Catalyst Metal‐Organic Framework Nanozymes

Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight‐driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 35; H. 6; S. e2207380 - n/a
Hauptverfasser: Stanley, Philip M., Su, Alice Y., Ramm, Vanessa, Fink, Pascal, Kimna, Ceren, Lieleg, Oliver, Elsner, Martin, Lercher, Johannes A., Rieger, Bernhard, Warnan, Julien, Fischer, Roland A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Wiley Subscription Services, Inc 01.02.2023
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight‐driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State‐of‐the‐art catalytic systems and materials often fall short as application‐oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light‐harvesting metal‐organic framework hosting two molecular catalysts is engineered to yield colloidal, water‐stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In‐depth fluorescence, X‐ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all‐in‐one material toward application in solar energy‐driven syngas generation. Highly active, durable, and selective catalysts for light‐driven CO2 and water conversion to value‐adding products are key toward a sustainable energy cycle. Such an all‐in‐one material is showcased, consisting of a metal‐organic framework co‐hosting two molecular catalysts. This assembly (nanozyme) harvests light, funnels energy to molecular sites, and enhances charge separation, thereby unlocking high photon efficiencies and adjustable syngas evolution.
AbstractList Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight‐driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State‐of‐the‐art catalytic systems and materials often fall short as application‐oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light‐harvesting metal‐organic framework hosting two molecular catalysts is engineered to yield colloidal, water‐stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In‐depth fluorescence, X‐ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all‐in‐one material toward application in solar energy‐driven syngas generation.
Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight‐driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State‐of‐the‐art catalytic systems and materials often fall short as application‐oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light‐harvesting metal‐organic framework hosting two molecular catalysts is engineered to yield colloidal, water‐stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In‐depth fluorescence, X‐ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all‐in‐one material toward application in solar energy‐driven syngas generation. Highly active, durable, and selective catalysts for light‐driven CO2 and water conversion to value‐adding products are key toward a sustainable energy cycle. Such an all‐in‐one material is showcased, consisting of a metal‐organic framework co‐hosting two molecular catalysts. This assembly (nanozyme) harvests light, funnels energy to molecular sites, and enhances charge separation, thereby unlocking high photon efficiencies and adjustable syngas evolution.
Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.
Author Stanley, Philip M.
Elsner, Martin
Rieger, Bernhard
Fink, Pascal
Kimna, Ceren
Lieleg, Oliver
Lercher, Johannes A.
Fischer, Roland A.
Su, Alice Y.
Ramm, Vanessa
Warnan, Julien
Author_xml – sequence: 1
  givenname: Philip M.
  orcidid: 0000-0002-1951-4074
  surname: Stanley
  fullname: Stanley, Philip M.
  organization: Technical University of Munich
– sequence: 2
  givenname: Alice Y.
  surname: Su
  fullname: Su, Alice Y.
  organization: Technical University of Munich
– sequence: 3
  givenname: Vanessa
  surname: Ramm
  fullname: Ramm, Vanessa
  organization: Technical University of Munich
– sequence: 4
  givenname: Pascal
  surname: Fink
  fullname: Fink, Pascal
  organization: Technical University of Munich
– sequence: 5
  givenname: Ceren
  surname: Kimna
  fullname: Kimna, Ceren
  organization: Technical University of Munich
– sequence: 6
  givenname: Oliver
  surname: Lieleg
  fullname: Lieleg, Oliver
  organization: Technical University of Munich
– sequence: 7
  givenname: Martin
  surname: Elsner
  fullname: Elsner, Martin
  organization: Technical University of Munich
– sequence: 8
  givenname: Johannes A.
  surname: Lercher
  fullname: Lercher, Johannes A.
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Bernhard
  surname: Rieger
  fullname: Rieger, Bernhard
  organization: Technical University of Munich
– sequence: 10
  givenname: Julien
  surname: Warnan
  fullname: Warnan, Julien
  email: julien.warnan@tum.de
  organization: Technical University of Munich
– sequence: 11
  givenname: Roland A.
  orcidid: 0000-0002-7532-5286
  surname: Fischer
  fullname: Fischer, Roland A.
  email: roland.fischer@tum.de
  organization: Technical University of Munich
BookMark eNpdkEtLw0AUhQdRsK1uXQfcuEm980xmWWqrgrWCug7X6USjSaZmEktc-RP8jf4Sxwcu3NwHfOdwOEOyXbvaEnJAYUwB2DGuKhwzYAwSnsIWGVDJaCxAy20yAM1lrJVId8nQ-0cA0ArUgORXD651Blss-7Yw0XTJPt7eWxfGdV_fo49mL67s2sLV0aZoH6KFK63pSmyi6bfIt9HChiMIls091sFj3mBlN655ii6xdq99Zf0e2cmx9Hb_d4_I7Xx2Mz2LL5an59PJRbzmoCAWdygTzlFJTFcKuEmosFZzkeaSMi1tnuY8NToVyiR3UueMoVlRRGGEsivgI3L047tu3HNnfZtVhTe2LLG2rvMZS3giEgpKBPTwH_rouqYO6QIVICalpIHSP9SmKG2frZuiwqbPKGRfnWdfnWd_nWeTk8Xk7-OffpB83Q
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Copyright_xml – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
DBID 24P
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202207380
DatabaseName Wiley Online Library Open Access
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202207380
Genre article
GrantInformation_xml – fundername: Fonds der Chemischen Industrie
  funderid: Fellowship
– fundername: German Research Foundation (DFG)
  funderid: FI502/43‐1; SPP1928; EXC2089
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p3060-4ba5733a65a8d603c714ee9348f51295ef8f38c9846c7b59f22acd1aa4c46ed03
IEDL.DBID 24P
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899401000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:46:57 EDT 2025
Sun Nov 09 08:31:41 EST 2025
Wed Jan 22 16:16:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3060-4ba5733a65a8d603c714ee9348f51295ef8f38c9846c7b59f22acd1aa4c46ed03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1951-4074
0000-0002-7532-5286
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207380
PQID 2774725551
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2737471064
proquest_journals_2774725551
wiley_primary_10_1002_adma_202207380_ADMA202207380
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2017; 2
2020; 120
2019; 58
1983; 9
2020; 13
1982; 104
2020; 56
2011; 12
1996; 35
2013; 6
2017; 9
2014; 136
2020; 5
1981; 81
2019; 119
2021; 231
2014; 50
2014; 11
2016; 45
2017; 20
2019; 9
2021; 6
2015; 6
2021; 4
2015; 3
2020; 142
2010
2013; 46
2019; 1
2013; 42
2015; 54
1940; 32
2005
2021; 141
2013; 341
2002
2015; 8
1998; 453
2011; 133
2017; 139
2016; 55
2021; 14
2017; 50
2021; 13
2010; 49
2021; 11
2022
2019; 48
2017; 56
2022; 13
2013; 135
2015
2016; 138
2018; 12
2021; 60
2018; 10
2009; 39
References_xml – volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 56
  start-page: 8166
  year: 2020
  publication-title: Chem. Commun.
– volume: 49
  start-page: 9283
  year: 2010
  publication-title: Inorg. Chem.
– volume: 81
  start-page: 447
  year: 1981
  publication-title: Chem. Rev.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 3952
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 119
  start-page: 2752
  year: 2019
  publication-title: Chem. Rev.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2216
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1686
  year: 2018
  publication-title: ChemCatChem
– volume: 12
  start-page: 5333
  year: 2018
  publication-title: ACS Nano
– volume: 14
  start-page: 4260
  year: 2021
  publication-title: Energies
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2710
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 536
  year: 1983
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: 5
  year: 2020
  publication-title: ACS Omega
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– year: 2022
  publication-title: Adv. Mater.
– volume: 453
  start-page: 161
  year: 1998
  publication-title: J. Electroanal. Chem.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 404
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 7443
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 364
  year: 2015
  publication-title: Energy Environ. Sci.
– start-page: 115
  year: 2010
– volume: 2
  start-page: 1886
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 104
  start-page: 4803
  year: 1982
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2022
  publication-title: Chem. Sci.
– volume: 20
  start-page: 283
  year: 2017
  publication-title: C. R. Chim.
– volume: 142
  start-page: 9428
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 1768
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 1643
  year: 2009
  publication-title: Clin. Exp. Allergy
– year: 2015
– volume: 13
  start-page: 358
  year: 2021
  publication-title: Nat. Chem.
– volume: 46
  start-page: 346
  year: 2013
  publication-title: J. Appl. Crystallogr.
– volume: 50
  start-page: 616
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 94
  year: 2019
  publication-title: Nanoscale Adv.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 141
  year: 2021
  publication-title: Renew. Sust. Energy Rev.
– volume: 9
  start-page: 3198
  year: 2019
  publication-title: ACS Catal.
– volume: 142
  start-page: 690
  year: 2020
  publication-title: J. Am. Chem. Soc.
– start-page: 4723
  year: 2005
  publication-title: Chem. Commun.
– volume: 4
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 120
  start-page: 919
  year: 2020
  publication-title: Chem. Rev.
– volume: 54
  start-page: 5096
  year: 2015
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 719
  year: 2021
  publication-title: Nat. Catal.
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 6
  start-page: 848
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 871
  year: 2021
  publication-title: ACS Catal.
– volume: 32
  start-page: 449
  year: 1940
  publication-title: Ind. Eng. Chem.
– volume: 8
  start-page: 2825
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2014
  publication-title: J. R. Soc. Interface
– volume: 35
  start-page: 2898
  year: 1996
  publication-title: Inorg. Chem.
– volume: 56
  start-page: 976
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– year: 2002
– volume: 12
  start-page: 2236
  year: 2011
  publication-title: Org. Electron.
– volume: 231
  start-page: 281
  year: 2021
  publication-title: Faraday Discuss.
– volume: 6
  start-page: 2727
  year: 2015
  publication-title: Chem. Sci.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 2338
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1983
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 6732
  year: 2016
  publication-title: Dalton Trans.
SSID ssj0009606
Score 2.5926087
Snippet Syngas, a mixture of CO and H2, is a high‐priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon...
Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2207380
SubjectTerms Ammonia
Carbon dioxide
carbon dioxide reduction
Catalysts
Catalytic converters
Controllability
Hydrocarbon fuels
Hydrogen evolution
Materials science
metal‐organic frameworks
molecular catalysts
nanozyme
Photocatalysis
Selectivity
Solar energy
syngas
Synthesis gas
Title Photocatalytic CO2‐to‐Syngas Evolution with Molecular Catalyst Metal‐Organic Framework Nanozymes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207380
https://www.proquest.com/docview/2774725551
https://www.proquest.com/docview/2737471064
Volume 35
WOSCitedRecordID wos000899401000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQywADb0ShVEZijVo7TuKMVR9ioKUCKnWLbMcBBhJE0kpl4ifwG_klnJ2-WGFxEsUnRZe783d-fIfQdeCxRBKz6p8EvsOk5A70JA6nzFUKxjylpC02EQyHfDIJRxun-Et-iNWEm_EMG6-NgwuZN9ekoSK2vEGUgpFySNqrhMDVcDuz0Zp217fVNc1qnxP6jC9pG1u0-Vv-F8DchKl2nOnv__8LD9DeAmPidmkUh2hLp0dod4N58Bglo-esyOzczRx64c4d_f78KjJoHubpk8hxb7YwSmymavFgWUYXd6xQXuCBhhsQKI9zKtxf7vPCELKzj_mrzk_QuN977Nw4i5ILzhvkDi34WcIQJArfEzz2W64KCNM6dBlPDDLwdMITl6sQUIsKpBcmlAoVEyGYYr6OW-4pqqRZqs8Q9uKQE-FC6g0ZpJRUAhT1aKAhRsSEa6-G6kuNRwu_ySMKaDSALMcjNXS1eg0Wb5YxRKqzqenjmkwasFQNUav_6K1k5ohKDmYaGc1HK81H7e6gvXo6_4vQBdoxdebL7dp1VCnep_oSbatZ8ZK_N6zNQRtMeANVu_f98e0PoeTdBA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA-ignrwvzidGsFr2ZqmbXocc2PiNgdO2K2kaaoebMfaDebJj-Bn9JP4knbddhUvpSXvQUneS37vJfk9hO5cm0aBqXb9I9cxaBAwAyRNgxFqCQFrnhCBLjbh9vtsNPIGxWlCdRcm54coE27KM_R8rRxcJaRrS9ZQHmriIELAShlE7VsUlhpl6oQOlry7ji6vqbb7DM-hbMHbWCe1df01hLmKU_VC0z74h188RPsFysSN3CyO0IaMj9HeCvfgCYoGb0mW6OzNHKRw84n8fH1nCTye5_ErT3FrVpglVsla3FsU0sVNrZRmuCfhBRTyC50CtxcnvTBM2snn_EOmp-il3Ro2O0ZRdMEYQ_RQh-HiiiKROzZnoVO3hGtSKT2LskhhA1tGLLKY8AC3CDewvYgQLkKTcyqoI8O6dYY24ySW5wjbocdMbkHwDTFkEJAAwKhNXAmzRGgyaVdQddHlfuE5qU8Aj7oQ59hmBd2WzWDzaiODxzKZKhlLxdKApiqI6AHwxzk3h5-zMBNf9bxf9rzfuO81yq-LvyjdoJ3OsNf1uw_9x0u0q6rO54e3q2gzm0zlFdoWs-w9nVxrA_wFs93eZw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT4MwEL-YaYw--N84nVoTX4mjFCiPyzai0c1FXbI3UkpRH4RF0GQ--RH8jH4Sr8A292p8IRB6hLR319-1198BnLs2i0NT7_rHrmOwMOQGtjQNTpklJc55UoZFsQm33-ejkTeosgn1WZiSH2K24KYto_DX2sDVOIov5qyhIiqIgyhFLeUYtS8zXUmmBsudO394M2fedYoCm3rDz_AcxqfMjU16sfiFBYz5G6kWU42_-Q8_uQUbFc4krVIxtmFJJTuw_ot9cBfiwVOap8X6zQRbkfYt_f78ylO83E-SR5GR7nulmEQv15LetJQuaRdCWU56Cm9QoDzSKYk_zfUi6LbTj8mLyvZg6Hcf2pdGVXbBGGP80MQBE5okUTi24JHTtKRrMqU8i_FYowNbxTy2uPQQuUg3tL2YUiEjUwgmmaOiprUPtSRN1AEQO_K4KSwMvzGKDEMaIhy1qavQT0QmV3YdGtMuDyrbyQKKiNTFSMc263A2e41ar7cyRKLSN93G0tE04qk60GIAgnHJzhGUPMw00D0fzHo-aHV6rdnT4V-ETmF10PGDm6v-9RGs6bLzZfZ2A2r565s6hhX5nj9nryeVBv4AhXrffQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+CO2+-to-Syngas+Evolution+with+Molecular+Catalyst+Metal-Organic+Framework+Nanozymes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Stanley%2C+Philip+M&rft.au=Su%2C+Alice+Y&rft.au=Ramm%2C+Vanessa&rft.au=Fink%2C+Pascal&rft.date=2023-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=6&rft.spage=e2207380&rft_id=info:doi/10.1002%2Fadma.202207380&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon