Ultrafast B1 mapping with RF‐prepared 3D FLASH acquisition: Correcting the bias due to T1‐induced k‐space filtering effect

Purpose The traditional radiofrequency (RF)‐prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle‐encoding and a second scan without this module for normalizing. To reduce the T1‐induced k‐space filtering effect, this method is limited to 2D FLASH acquisitio...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 88; no. 2; pp. 757 - 769
Main Authors: Zhu, Dan, Schär, Michael, Qin, Qin
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.08.2022
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose The traditional radiofrequency (RF)‐prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle‐encoding and a second scan without this module for normalizing. To reduce the T1‐induced k‐space filtering effect, this method is limited to 2D FLASH acquisition with a two‐parameter method. A novel 3D RF‐prepared three‐parameter method for ultrafast B1‐mapping is proposed to correct the T1‐induced quantification bias. Theory The point spread function analysis of FLASH shows that the prepared longitudinal magnetization before the FLASH acquisition and the image signal obeys a linear (not proportional) relationship. The intercept of the linear function causes the quantification bias and can be captured by a third saturated scan. Methods Using the 2D double‐angle method (DAM) as the reference, a 3D RF‐prepared three‐parameter protocol with 9 s duration was compared with the two‐parameter method, as well as the saturated DAM (SDAM) method, the dual refocusing echo acquisition mode (DREAM) method, and the actual flip‐angle imaging (AFI) method, for B1 mapping of brain, breast, and abdomen with different orientations and shim settings at 3T. Results The 3D RF‐prepared three‐parameter method with complex‐subtraction delivered consistently lower RMS error, error mean, error standard deviation, and higher concordance correlation coefficients values than the two‐parameter method, the three‐parameter method with magnitude‐subtraction, the multi‐slice DREAM and the 3D AFI, and were close to the results of 2D or multi‐slice SDAM. Conclusion The proposed ultrafast 3D RF‐prepared three‐parameter method with complex‐subtraction was demonstrated with high accuracy for B1 mapping of brain, breast, and abdomen.
AbstractList The traditional radiofrequency (RF)-prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle-encoding and a second scan without this module for normalizing. To reduce the T1 -induced k-space filtering effect, this method is limited to 2D FLASH acquisition with a two-parameter method. A novel 3D RF-prepared three-parameter method for ultrafast B1 -mapping is proposed to correct the T1 -induced quantification bias.PURPOSEThe traditional radiofrequency (RF)-prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle-encoding and a second scan without this module for normalizing. To reduce the T1 -induced k-space filtering effect, this method is limited to 2D FLASH acquisition with a two-parameter method. A novel 3D RF-prepared three-parameter method for ultrafast B1 -mapping is proposed to correct the T1 -induced quantification bias.The point spread function analysis of FLASH shows that the prepared longitudinal magnetization before the FLASH acquisition and the image signal obeys a linear (not proportional) relationship. The intercept of the linear function causes the quantification bias and can be captured by a third saturated scan.THEORYThe point spread function analysis of FLASH shows that the prepared longitudinal magnetization before the FLASH acquisition and the image signal obeys a linear (not proportional) relationship. The intercept of the linear function causes the quantification bias and can be captured by a third saturated scan.Using the 2D double-angle method (DAM) as the reference, a 3D RF-prepared three-parameter protocol with 9 s duration was compared with the two-parameter method, as well as the saturated DAM (SDAM) method, the dual refocusing echo acquisition mode (DREAM) method, and the actual flip-angle imaging (AFI) method, for B1 mapping of brain, breast, and abdomen with different orientations and shim settings at 3T.METHODSUsing the 2D double-angle method (DAM) as the reference, a 3D RF-prepared three-parameter protocol with 9 s duration was compared with the two-parameter method, as well as the saturated DAM (SDAM) method, the dual refocusing echo acquisition mode (DREAM) method, and the actual flip-angle imaging (AFI) method, for B1 mapping of brain, breast, and abdomen with different orientations and shim settings at 3T.The 3D RF-prepared three-parameter method with complex-subtraction delivered consistently lower RMS error, error mean, error standard deviation, and higher concordance correlation coefficients values than the two-parameter method, the three-parameter method with magnitude-subtraction, the multi-slice DREAM and the 3D AFI, and were close to the results of 2D or multi-slice SDAM.RESULTSThe 3D RF-prepared three-parameter method with complex-subtraction delivered consistently lower RMS error, error mean, error standard deviation, and higher concordance correlation coefficients values than the two-parameter method, the three-parameter method with magnitude-subtraction, the multi-slice DREAM and the 3D AFI, and were close to the results of 2D or multi-slice SDAM.The proposed ultrafast 3D RF-prepared three-parameter method with complex-subtraction was demonstrated with high accuracy for B1 mapping of brain, breast, and abdomen.CONCLUSIONThe proposed ultrafast 3D RF-prepared three-parameter method with complex-subtraction was demonstrated with high accuracy for B1 mapping of brain, breast, and abdomen.
Purpose The traditional radiofrequency (RF)‐prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle‐encoding and a second scan without this module for normalizing. To reduce the T1‐induced k‐space filtering effect, this method is limited to 2D FLASH acquisition with a two‐parameter method. A novel 3D RF‐prepared three‐parameter method for ultrafast B1‐mapping is proposed to correct the T1‐induced quantification bias. Theory The point spread function analysis of FLASH shows that the prepared longitudinal magnetization before the FLASH acquisition and the image signal obeys a linear (not proportional) relationship. The intercept of the linear function causes the quantification bias and can be captured by a third saturated scan. Methods Using the 2D double‐angle method (DAM) as the reference, a 3D RF‐prepared three‐parameter protocol with 9 s duration was compared with the two‐parameter method, as well as the saturated DAM (SDAM) method, the dual refocusing echo acquisition mode (DREAM) method, and the actual flip‐angle imaging (AFI) method, for B1 mapping of brain, breast, and abdomen with different orientations and shim settings at 3T. Results The 3D RF‐prepared three‐parameter method with complex‐subtraction delivered consistently lower RMS error, error mean, error standard deviation, and higher concordance correlation coefficients values than the two‐parameter method, the three‐parameter method with magnitude‐subtraction, the multi‐slice DREAM and the 3D AFI, and were close to the results of 2D or multi‐slice SDAM. Conclusion The proposed ultrafast 3D RF‐prepared three‐parameter method with complex‐subtraction was demonstrated with high accuracy for B1 mapping of brain, breast, and abdomen.
PurposeThe traditional radiofrequency (RF)‐prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle‐encoding and a second scan without this module for normalizing. To reduce the T1‐induced k‐space filtering effect, this method is limited to 2D FLASH acquisition with a two‐parameter method. A novel 3D RF‐prepared three‐parameter method for ultrafast B1‐mapping is proposed to correct the T1‐induced quantification bias.TheoryThe point spread function analysis of FLASH shows that the prepared longitudinal magnetization before the FLASH acquisition and the image signal obeys a linear (not proportional) relationship. The intercept of the linear function causes the quantification bias and can be captured by a third saturated scan.MethodsUsing the 2D double‐angle method (DAM) as the reference, a 3D RF‐prepared three‐parameter protocol with 9 s duration was compared with the two‐parameter method, as well as the saturated DAM (SDAM) method, the dual refocusing echo acquisition mode (DREAM) method, and the actual flip‐angle imaging (AFI) method, for B1 mapping of brain, breast, and abdomen with different orientations and shim settings at 3T.ResultsThe 3D RF‐prepared three‐parameter method with complex‐subtraction delivered consistently lower RMS error, error mean, error standard deviation, and higher concordance correlation coefficients values than the two‐parameter method, the three‐parameter method with magnitude‐subtraction, the multi‐slice DREAM and the 3D AFI, and were close to the results of 2D or multi‐slice SDAM.ConclusionThe proposed ultrafast 3D RF‐prepared three‐parameter method with complex‐subtraction was demonstrated with high accuracy for B1 mapping of brain, breast, and abdomen.
Author Zhu, Dan
Qin, Qin
Schär, Michael
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-0940-1519
  surname: Zhu
  fullname: Zhu, Dan
  email: dzhu12@jhmi.edu
  organization: Johns Hopkins University School of Medicine
– sequence: 2
  givenname: Michael
  orcidid: 0000-0002-7044-9941
  surname: Schär
  fullname: Schär, Michael
  organization: Johns Hopkins University School of Medicine
– sequence: 3
  givenname: Qin
  orcidid: 0000-0002-6432-2944
  surname: Qin
  fullname: Qin, Qin
  organization: Johns Hopkins University School of Medicine
BookMark eNpdkbtOAzEQRS0EEuFR8AeWaGgCY683xnQQCEEKQuJRr7zeMRj2he1VRMcn8I18CU6goppbnDOa0d0hm23XIiEHDI4ZAD9pfHPMFRdyg4xYzvmY50pskhFIAeOMKbFNdkJ4BQClpBiRz6c6em11iPSC0Ub3vWuf6dLFF3o_-_786j322mNFs0s6W5w_zKk274MLLrquPaPTzns0ceXEF6Sl04FWA9LY0UeWdNdWg0n2W8qh1wapdXVEvxLQ2qTukS2r64D7f3OXPM2uHqfz8eLu-mZ6vhj3XDGZ3pCAvJJlXnFbKVaZjOU4EVrDRAmeW4YlswZNlhkUJYCFXNsKZKkYZDnPdsnR797ed-8Dhlg0Lhisa91iN4SCT4Sc5IKr04Qe_kNfu8G36bpESQWKnUpI1MkvtXQ1fhS9d432HwWDYlVEkYoo1kUUt_e365D9AMULgWA
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
DBID 24P
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.29247
DatabaseName Wiley Online Library Open Access
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 769
ExternalDocumentID MRM29247
Genre article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P41 EB031771; R01 HL135500; R01 HL138182; R01 HL144751
– fundername: Intellectual and Developmental Disabilities Research Center
  funderid: P50 HD103538
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
M7Z
O8X
P64
7X8
ID FETCH-LOGICAL-p2917-2570e2d7b5d2fd91dc315e64aa069425f1eb1fcec33ce4b00f05afd07b9103523
IEDL.DBID DRFUL
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777895700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Sun Nov 09 12:55:04 EST 2025
Sat Nov 29 14:50:35 EST 2025
Wed Jan 22 16:22:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2917-2570e2d7b5d2fd91dc315e64aa069425f1eb1fcec33ce4b00f05afd07b9103523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0940-1519
0000-0002-7044-9941
0000-0002-6432-2944
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29247
PQID 2679091870
PQPubID 1016391
PageCount 13
ParticipantIDs proquest_miscellaneous_2647654298
proquest_journals_2679091870
wiley_primary_10_1002_mrm_29247_MRM29247
PublicationCentury 2000
PublicationDate August 2022
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 64
2021; 86
2013; 69
2006; 56
2020; 84
2006; 55
2000; 43
2015; 74
2017; 46
2016; 76
2016; 75
2018; 80
1992; 19
2022; 88
1993; 103
1998; 40
1996; 35
2012; 35
2010; 63
2007; 57
2009; 28
2010; 23
2010; 21
2010; 64
2015; 28
2019; 81
2021; 75
2021; 11
1994; 104
2006; 24
2013; 2013
2013; 32
2020; 73
2015; 42
1993; 11
2008; 27
2010; 256
2006; 240
2005; 53
2011; 66
2006; 186
2005; 54
2003; 49
2012; 68
2021; 85
2008; 60
2014; 71
References_xml – volume: 76
  start-page: 1136
  year: 2016
  end-page: 1148
  article-title: Velocity‐selective‐inversion prepared arterial spin labeling
  publication-title: Magn Reson Med
– volume: 56
  start-page: 463
  year: 2006
  end-page: 468
  article-title: Factors influencing flip angle mapping in MRI: RF pulse shape, slice‐select gradients, off‐resonance excitation, and B0 inhomogeneities
  publication-title: Magn Reson Med
– volume: 43
  start-page: 589
  year: 2000
  end-page: 593
  article-title: Correction for B1 and B0 variations in quantitative T2 measurements using MRI
  publication-title: Magn Reson Med
– volume: 54
  start-page: 994
  year: 2005
  end-page: 1001
  article-title: Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels
  publication-title: Magn Reson Med
– volume: 49
  start-page: 515
  year: 2003
  end-page: 526
  article-title: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state
  publication-title: Magnet Reson Med.
– volume: 63
  start-page: 1610
  year: 2010
  end-page: 1626
  article-title: Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady‐state techniques
  publication-title: Magn Reson Med
– volume: 11
  start-page: 437
  year: 1993
  end-page: 441
  article-title: Radiofrequency map of an NMR coil by imaging
  publication-title: Magn Reson Imaging
– volume: 53
  start-page: 434
  year: 2005
  end-page: 445
  article-title: Transmit and receive transmission line arrays for 7 tesla parallel imaging
  publication-title: Magn Reson Med
– volume: 28
  start-page: 1365
  year: 2009
  end-page: 1374
  article-title: Determination of electric conductivity and local SAR via B1 mapping
  publication-title: IEEE Trans Med Imaging
– volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout
  publication-title: Magn Reson Med
– volume: 28
  start-page: 185
  year: 2015
  end-page: 194
  article-title: An in vivo comparison of the DREAM sequence with current RF shim technology
  publication-title: Magma
– volume: 104
  start-page: 1
  year: 1994
  end-page: 10
  article-title: WET, a T1‐ and B1‐insensitive water‐suppression method for in vivo localized 1H NMR spectroscopy
  publication-title: J Magn Reson B
– volume: 68
  start-page: 1911
  year: 2012
  end-page: 1918
  article-title: B1‐based specific energy absorption rate determination for nonquadrature radiofrequency excitation
  publication-title: Magn Reson Med
– volume: 76
  start-page: 466
  year: 2016
  end-page: 477
  article-title: Identification and reduction of image artifacts in non‐contrast‐enhanced velocity‐selective peripheral angiography at 3T
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1517
  year: 2012
  end-page: 1526
  article-title: DREAM‐a novel approach for robust, ultrafast, multi‐slice B1 mapping
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1315
  year: 2010
  end-page: 1322
  article-title: B1 mapping by Bloch‐Siegert shift
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1222
  year: 2012
  end-page: 1226
  article-title: Improved B1 homogeneity of 3 tesla breast MRI using dual‐source parallel radiofrequency excitation
  publication-title: J Magn Reson Imaging
– volume: 86
  start-page: 1420
  year: 2021
  end-page: 1433
  article-title: Three‐dimensional whole‐brain mapping of cerebral blood volume and venous cerebral blood volume using Fourier transform‐based velocity‐selective pulse trains
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1232
  year: 2016
  end-page: 1241
  article-title: Velocity‐selective magnetization‐prepared non‐contrast‐enhanced cerebral MR angiography at 3 tesla: improved immunity to B0/B1 inhomogeneity
  publication-title: Magn Reson Med
– volume: 66
  start-page: 456
  year: 2011
  end-page: 466
  article-title: Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography
  publication-title: Magn Reson Med
– volume: 240
  start-page: 318
  year: 2006
  end-page: 332
  article-title: H1 MR spectroscopy of the brain: absolute quantification of metabolites
  publication-title: Radiology
– volume: 2013
  year: 2013
  article-title: Recent progress and future challenges in MR electric properties tomography
  publication-title: Comput Math Methods Med
– volume: 42
  start-page: 217
  year: 2015
  end-page: 223
  article-title: Fast multistation water/fat imaging at 3T using DREAM‐based RF shimming
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 643
  year: 2008
  end-page: 648
  article-title: Measurement and characterization of RF nonuniformity over the heart at 3T using body coil transmission
  publication-title: J Magn Reson Imaging
– volume: 88
  start-page: 76
  year: 2022
  end-page: 88
  article-title: A revisit of the k‐space filtering effects of magnetization‐prepared 3D FLASH and balanced SSFP acquisitions: analytical characterization of the point spread functions
  publication-title: Magn Reson Imaging
– volume: 40
  start-page: 847
  year: 1998
  end-page: 856
  article-title: SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil
  publication-title: Magn Reson Med
– volume: 71
  start-page: 246
  year: 2014
  end-page: 256
  article-title: Volumetric B1+ mapping of the brain at 7T using DREAM
  publication-title: Magn Reson Med
– volume: 256
  start-page: 966
  year: 2010
  end-page: 975
  article-title: Dual‐source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience
  publication-title: Radiology
– volume: 74
  start-page: 93
  year: 2015
  end-page: 105
  article-title: Improved quantitative myocardial T2 mapping: impact of the fitting model
  publication-title: Magn Reson Med
– volume: 80
  start-page: 1997
  year: 2018
  end-page: 2005
  article-title: Characterization and suppression of stripe artifact in velocity‐selective magnetization‐prepared unenhanced MR angiography
  publication-title: Magn Reson Med
– volume: 19
  start-page: 1099
  year: 1992
  end-page: 1104
  article-title: Mapping of the radio frequency magnetic field with a MR snapshot FLASH technique
  publication-title: Med Phys
– volume: 64
  start-page: 2515
  year: 2017
  end-page: 2530
  article-title: Electrical properties tomography based on B1 maps in MRI: principles, applications, and challenges
  publication-title: IEEE Trans Biomed Eng
– volume: 69
  start-page: 382
  year: 2013
  end-page: 390
  article-title: Functional perfusion imaging using pseudocontinuous arterial spin labeling with low‐flip‐angle segmented 3D spiral readouts
  publication-title: Magn Reson Med
– volume: 24
  start-page: 735
  year: 2006
  end-page: 746
  article-title: Imaging artifacts at 3.0T
  publication-title: J Magn Reson Imaging
– volume: 32
  start-page: 1058
  year: 2013
  end-page: 1067
  article-title: From complex B1 mapping to local SAR estimation for human brain MR imaging using Multi‐Channel transceiver coil at 7T
  publication-title: IEEE Trans Med Imaging
– volume: 11
  start-page: 176
  year: 2021
  article-title: Electrical properties tomography: a methodological review
  publication-title: Diagnostics
– volume: 53
  start-page: 666
  year: 2005
  end-page: 674
  article-title: In vivo method for correcting transmit/receive nonuniformities with phased array coils
  publication-title: Magn Reson Med
– volume: 53
  start-page: 15
  year: 2005
  end-page: 21
  article-title: Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging
  publication-title: Magn Reson Med
– volume: 85
  start-page: 2723
  year: 2021
  end-page: 2734
  article-title: Ensuring both velocity and spatial responses robust to B0/B1+ field inhomogeneities for velocity‐selective arterial spin labeling through dynamic phase‐cycling
  publication-title: Magn Reson Med
– volume: 103
  start-page: 82
  year: 1993
  end-page: 85
  article-title: Mapping of the radiofrequency field
  publication-title: J Magn Reson Ser A
– volume: 75
  start-page: 156
  year: 2021
  end-page: 161
  article-title: A novel spectrally selective fat saturation pulse design with robustness to B0 and B1 inhomogeneities: a demonstration on 3D T1‐weighted breast MRI at 3 T
  publication-title: Magn Reson Imaging
– volume: 60
  start-page: 997
  year: 2008
  end-page: 1002
  article-title: Design and use of tailored hard‐pulse trains for uniformed saturation of myocardium at 3 tesla
  publication-title: Magn Reson Med
– volume: 42
  start-page: 280
  year: 2015
  end-page: 289
  article-title: Whole‐brain quantitative mapping of metabolites using short echo three‐dimensional proton MRSI
  publication-title: J Magn Reson Imaging
– volume: 76
  start-page: 83
  year: 2016
  end-page: 93
  article-title: Dynamic multi‐coil tailored excitation for transmit B‐1 correction at 7 tesla
  publication-title: Magn Reson Med
– volume: 46
  start-page: 1673
  year: 2017
  end-page: 1682
  article-title: B1 mapping for bias‐correction in quantitative T1 imaging of the brain at 3T using standard pulse sequences
  publication-title: J Magn Reson Imaging
– volume: 21
  start-page: 115
  year: 2010
  end-page: 128
  article-title: Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain: a didactic review
  publication-title: Top Magn Reson Imaging
– volume: 81
  start-page: 3544
  year: 2019
  end-page: 3554
  article-title: Cerebral blood volume mapping using Fourier‐transform‐based velocity‐selective saturation pulse trains
  publication-title: Magn Reson Med
– volume: 35
  start-page: 246
  year: 1996
  end-page: 251
  article-title: Imaging of the active B1 field in vivo
  publication-title: Magn Reson Med
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 84
  start-page: 2512
  year: 2020
  end-page: 2522
  article-title: Improved velocity‐selective‐inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition
  publication-title: Magn Reson Med
– volume: 186
  start-page: 1524
  year: 2006
  end-page: 1532
  article-title: Abdominal MRI at 3.0 T: the basics revisited
  publication-title: Am J Roentgenol
– volume: 53
  start-page: 408
  year: 2005
  end-page: 417
  article-title: Measurement and correction of transmitter and receiver induced nonuniformities in vivo
  publication-title: Magn Reson Med
– volume: 23
  start-page: 368
  year: 2010
  end-page: 374
  article-title: Image‐guided radio‐frequency gain calibration for high‐field MRI
  publication-title: NMR Biomed
– volume: 84
  start-page: 1173
  year: 2020
  end-page: 1183
  article-title: Non‐contrast‐enhanced abdominal MRA at 3 T using velocity‐selective pulse trains
  publication-title: Magn Reson Med
– volume: 55
  start-page: 1326
  year: 2006
  end-page: 1333
  article-title: Saturated double‐angle method for rapid B1+ mapping
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1422
  year: 2008
  end-page: 1432
  article-title: Slice‐selective RF pulses for in vivo B(1)(+) inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16‐element coil
  publication-title: Magn Reson Med
– volume: 73
  start-page: 138
  year: 2020
  end-page: 147
  article-title: Quantitative T2 mapping using accelerated 3D stack‐of‐spiral gradient echo readout
  publication-title: Magn Reson Imaging
SSID ssj0009974
Score 2.4529827
Snippet Purpose The traditional radiofrequency (RF)‐prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle‐encoding and a...
PurposeThe traditional radiofrequency (RF)‐prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle‐encoding and a...
The traditional radiofrequency (RF)-prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle-encoding and a second scan...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 757
SubjectTerms 3D FLASH
Abdomen
B1 mapping
Bias
Brain
Brain mapping
Breast
complex‐subtraction
Correlation coefficients
Errors
Filtration
Function analysis
Image acquisition
k‐space filtering effect
Linear functions
Mapping
Modules
Neuroimaging
Normalizing
Parameters
point spread function
Point spread functions
Radio frequency
RF‐prepared B1 mapping
Subtraction
Title Ultrafast B1 mapping with RF‐prepared 3D FLASH acquisition: Correcting the bias due to T1‐induced k‐space filtering effect
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29247
https://www.proquest.com/docview/2679091870
https://www.proquest.com/docview/2647654298
Volume 88
WOSCitedRecordID wos000777895700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71AYgLj1LEQqmMxIFLaOzY6wROpSUq0u6qWrqwt8jxA61gHyRZzv0J_EZ-CWMnu4UbEpfIkT1SpHnks2f8DcBLKpTNUpFF1vIk4tTRKNUujbSRTlthEhZ4uj8N5GiUTqfZ5Q683dyFafkhtgdu3jNCvPYOrsr65IY0dF7NXzPcPchd2Gdot2jk--fjfDK44dzNWhJmyX2oyfiGWChmJ1vhv4Dln_A0_F_y-__1ZQ_gXgcryWlrBw9hxy4O4M6wS5wfwO1Q6anrR3A9-dZUyqm6Ie8omSvPz_CF-ONYMs5_Xf9cVTYUpZPknOSD048XROnv61lb2vWGnPluHtrXShOEjqScqZqYtSXNklxRFMctPhqLIV9xjMFKW-JmPiHvBdrakUOY5O-vzi6irg1DtGK4mYt8nzvLjCyFYc5k1OiECtvnSvlLs0w4ivEeFauTRFuObuxioZyJZYlQBPFd8hj2FsuFfQKkFKmyfUYtR3kRx8q3OqGpLPsuK1VKe3C00UbR-VJdsL7MENVgYOnBi-00eoFPbaiFXa79Gi5D6620B6-CbopVy9ZRtLzMrECtFEErxXA8DIOn_770Gdxl_t5DqPw7gr2mWtvncEv_aGZ1dQy7jF_iU07T484I8e3zh9Fv_f3hdQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXV4XHguIwgJG4sAlbOzYdYK4LLtERaQVKi3aW-Q49qpa-iBJOe9P4DfySxg7aRduSNwsxSNFmoe_sWe-AXhFhTJJLJLAGB4FnFoaxNrGgS6l1UaUEfM83V8zOR7HZ2fJ5z14t-2FafkhdhduzjN8vHYO7i6kj65YQxfV4g3D9EFeg32OZsR7sH86SWfZFelu0rIwS-5iTcK3zEIhO9oJ_4Us_8Sn_oBJ7_7fr92DOx2wJMetJdyHPbM8gJuj7un8AG74Wk9dP4DL2bemUlbVDXlPyUI5hoZz4i5kyST9dflzXRlflk6iU5Jmx1-GROnvm3lb3PWWnLh5HtpVSxMEj6SYq5qUG0OaFZlSFMckH82lJBe4xnClDbFz9yTvBNrqkYcwSz9MT4ZBN4ghWDNM5wI36c6wUhaiZLZMaKkjKsyAK-XaZpmwFCM-qlZHkTYcHdmGQtkylAWCEUR40SPoLVdL8xhIIWJlBowajvIiDJUbdkJjWQxsUqiY9uFwq46886Y6ZwOZIK7B0NKHl7vP6AfucUMtzWrj9nDph2_FfXjtlZOvW76OvGVmZjlqJfdayUeTkV88-fetL-DWcDrK8uzj-NNTuM1cF4SvAzyEXlNtzDO4rn8087p63lnhb5i84pc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLVS9FChF3baAkThwCY0de5MgLqVLVMTuqlq6qLfI8Q9awf40yXLuI_CMPAljJ7uFGxI3S_FIkcYz_sYz8w3AKyqkSRORBsbwKODU0iBRNgmUjq0yQkfM83R_GcSjUXJ9nV5uwbt1L0zDD7F5cHOW4f21M3Cz1Pb0jjV0Vs7eMAwf4nuwzQUi8Q5s98fZZHBHups2LMwxd74m5WtmoZCdboT_QpZ_4lN_wWQP_-_XHsFeCyzJWXMSHsOWme_DzrBNne_DA1_rqaoncDv5XpfSyqom7ymZScfQ8JW4B1kyzn7d_lyWxpelk6hPssHZ5wsi1c1q2hR3vSXnbp6HctXSBMEjKaayInplSL0gVxTFMcjH46LJN1yju1KG2KlLyTuBpnrkACbZh6vzi6AdxBAsGYZzgZt0Z5iOC6GZ1SnVKqLC9LiUrm2WCUvR46NqVRQpw9GQbSik1WFcIBhBhBc9hc58MTeHQAqRSNNj1HCUF2Eo3bATmsRFz6aFTGgXTtbqyFtrqnLWi1PENehauvBy8xntwCU35NwsVm4Pj_3wraQLr71y8mXD15E3zMwsR63kXiv5cDz0i6N_3_oCdi77WT74OPp0DLvMNUH4MsAT6NTlyjyD--pHPa3K5-0h_A1Pn-IS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+B1+mapping+with+RF-prepared+3D+FLASH+acquisition%3A+Correcting+the+bias+due+to+T1+-induced+k-space+filtering+effect&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhu%2C+Dan&rft.au=Sch%C3%A4r%2C+Michael&rft.au=Qin%2C+Qin&rft.date=2022-08-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=88&rft.issue=2&rft.spage=757&rft_id=info:doi/10.1002%2Fmrm.29247&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon