Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue

Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational simulations–based on the field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of computational methods in engineering Jg. 27; H. 4; S. 1187 - 1230
Hauptverfasser: Budday, Silvia, Ovaert, Timothy C., Holzapfel, Gerhard A., Steinmann, Paul, Kuhl, Ellen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.09.2020
Springer Nature B.V
Schlagworte:
ISSN:1134-3060, 1886-1784
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational simulations–based on the field equations of nonlinear continuum mechanics–can provide important insights into the underlying mechanisms of brain injury and disease that go beyond the possibilities of traditional diagnostic tools. Realistic numerical predictions, however, require mechanical models that are capable of capturing the complex and unique characteristics of this ultrasoft, heterogeneous, and active tissue. In recent years, contradictory experimental results have caused confusion and hindered rapid progress. In this review, we carefully assess the challenges associated with brain tissue testing and modeling, and work out the most important characteristics of brain tissue behavior on different length and time scales. Depending on the application of interest, we propose appropriate mechanical modeling approaches that are as complex as necessary but as simple as possible. This comprehensive review will, on the one hand, stimulate the design of new experiments and, on the other hand, guide the selection of appropriate constitutive models for specific applications. Mechanical models that capture the complex behavior of nervous tissues and are accurately calibrated with reliable and comprehensive experimental data are key to performing reliable predictive simulations. Ultimately, mathematical modeling and computational simulations of the brain are useful for both biomedical and clinical communities, and cover a wide range of applications ranging from predicting disease progression and estimating injury risk to planning surgical procedures.
AbstractList Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational simulations–based on the field equations of nonlinear continuum mechanics–can provide important insights into the underlying mechanisms of brain injury and disease that go beyond the possibilities of traditional diagnostic tools. Realistic numerical predictions, however, require mechanical models that are capable of capturing the complex and unique characteristics of this ultrasoft, heterogeneous, and active tissue. In recent years, contradictory experimental results have caused confusion and hindered rapid progress. In this review, we carefully assess the challenges associated with brain tissue testing and modeling, and work out the most important characteristics of brain tissue behavior on different length and time scales. Depending on the application of interest, we propose appropriate mechanical modeling approaches that are as complex as necessary but as simple as possible. This comprehensive review will, on the one hand, stimulate the design of new experiments and, on the other hand, guide the selection of appropriate constitutive models for specific applications. Mechanical models that capture the complex behavior of nervous tissues and are accurately calibrated with reliable and comprehensive experimental data are key to performing reliable predictive simulations. Ultimately, mathematical modeling and computational simulations of the brain are useful for both biomedical and clinical communities, and cover a wide range of applications ranging from predicting disease progression and estimating injury risk to planning surgical procedures.
Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational simulations–based on the field equations of nonlinear continuum mechanics–can provide important insights into the underlying mechanisms of brain injury and disease that go beyond the possibilities of traditional diagnostic tools. Realistic numerical predictions, however, require mechanical models that are capable of capturing the complex and unique characteristics of this ultrasoft, heterogeneous, and active tissue. In recent years, contradictory experimental results have caused confusion and hindered rapid progress. In this review, we carefully assess the challenges associated with brain tissue testing and modeling, and work out the most important characteristics of brain tissue behavior on different length and time scales. Depending on the application of interest, we propose appropriate mechanical modeling approaches that are as complex as necessary but as simple as possible. This comprehensive review will, on the one hand, stimulate the design of new experiments and, on the other hand, guide the selection of appropriate constitutive models for specific applications. Mechanical models that capture the complex behavior of nervous tissues and are accurately calibrated with reliable and comprehensive experimental data are key to performing reliable predictive simulations. Ultimately, mathematical modeling and computational simulations of the brain are useful for both biomedical and clinical communities, and cover a wide range of applications ranging from predicting disease progression and estimating injury risk to planning surgical procedures.
Author Budday, Silvia
Ovaert, Timothy C.
Holzapfel, Gerhard A.
Steinmann, Paul
Kuhl, Ellen
Author_xml – sequence: 1
  givenname: Silvia
  orcidid: 0000-0002-7072-8174
  surname: Budday
  fullname: Budday, Silvia
  email: silvia.budday@fau.de
  organization: Friedrich-Alexander-University Erlangen-Nürnberg
– sequence: 2
  givenname: Timothy C.
  surname: Ovaert
  fullname: Ovaert, Timothy C.
  organization: University of Notre Dame
– sequence: 3
  givenname: Gerhard A.
  surname: Holzapfel
  fullname: Holzapfel, Gerhard A.
  organization: Graz University of Technology, Norwegian University of Technology
– sequence: 4
  givenname: Paul
  surname: Steinmann
  fullname: Steinmann, Paul
  organization: Friedrich-Alexander-University Erlangen-Nürnberg, University of Glasgow
– sequence: 5
  givenname: Ellen
  surname: Kuhl
  fullname: Kuhl, Ellen
  organization: Stanford University
BookMark eNpFkFtLAzEQhYMo2Fb_gE8Bn6O5bS6-1WJVaBG0-hqyuxO7pWTrZmvx35taxac5A-fMHL4hOo5tBIQuGL1ilOrrxJgRjFBmCbWi4GR3hAbMGEWYNvI4ayYkEVTRUzRMaUVpIa3lA_Q2bUL_hV-WvoaE24BvO9_EGzzGz_DZwA63EfdLwHOolj42lV_jBaS-ie_YxxrP2xrW--UviRdNSls4QyfBrxOc_84Rep3eLSYPZPZ0_zgZz8iGa9aTUtV1EYwCXlaFhVJ4H6jmrFDBGm68NUFAxUpd8aBBWpOFMFIFLiTlwYoRujzc3XTtxzYXc6t228X80nEpFCuMoTq7xMGVNl0uC92_i1G3B-gOAF0G6H4Aup34BgsjZEY
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
JQ2
DOI 10.1007/s11831-019-09352-w
DatabaseName Springer Nature OA Free Journals
ProQuest Computer Science Collection
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 1230
ExternalDocumentID 10_1007_s11831_019_09352_w
GrantInformation_xml – fundername: German Research Foundation
  grantid: BU 3728/1-1
– fundername: Emerging Fields Initiative by the FAU
  grantid: 4_T ech_04
– fundername: Stanford University
  grantid: Bio-X IIP seed grant
– fundername: German Research Foundation
  grantid: STE 544/50
– fundername: Emerging Talents Initiative by the FAU
  grantid: ETI
– fundername: Alexander von Humboldt-Stiftung
  grantid: Humboldt Research Award
– fundername: National Science Foundation
  grantid: CMMI 1727268
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
_50
~EX
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
JQ2
JZLTJ
ID FETCH-LOGICAL-p271t-b6dd5f86e2bc59eb3aaf072156f9828a98f3ec1b7c2f7e4987c23846f23402f93
IEDL.DBID RSV
ISICitedReferencesCount 315
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565732400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1134-3060
IngestDate Wed Sep 17 23:58:42 EDT 2025
Fri Feb 21 02:32:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p271t-b6dd5f86e2bc59eb3aaf072156f9828a98f3ec1b7c2f7e4987c23846f23402f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7072-8174
OpenAccessLink https://link.springer.com/10.1007/s11831-019-09352-w
PQID 2436158807
PQPubID 1486352
PageCount 44
ParticipantIDs proquest_journals_2436158807
springer_journals_10_1007_s11831_019_09352_w
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References LabusKMPuttlitzCMViscoelasticity of brain corpus callosum in biaxial tensionJ Mech Phys Solids201696591604
Antonovaite N, Beekmans SV, Hol EM, Wadman WJ, Iannuzzi D (2018) Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping. arXiv preprint arXiv:1802.02245
OgdenRLarge deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solidsProc R Soc A197232615675655840257.73034
QianLZhaoHGuoYLiYZhouMYangLWangZSunYInfluence of strain rate on indentation response of porcine brainJ Mech Behav Biomed Mater201882210217
WeickenmeierJSaezPButlerCYoungPGorielyAKuhlEBulging brainsJ Elast20171291–219721236947861373.74076
Van DommelenJVan der SandeTHrapkoMPetersGMechanical properties of brain tissue by indentation: interregional variationJ Mech Behav Biomed Mater20103158166
JackCRHoltzmanDMBiomarker modeling of Alzheimer’s diseaseNeuron20138013471358
JuckerMWalkerLCSelf-propagation of pathogenic protein aggregates in neurodegenerative diseasesNature20135014551
ZhaoWChoateBJiSMaterial properties of the brain in injury-relevant conditions-experiments and computational modelingJ Mech Behav Biomed Mater201880222234
GefenAGefenNZhuQRaghupathiRMarguliesSSAge-dependent changes in material properties of the brain and braincase of the ratJ Neurotrauma2003201111631177
WeickenmeierJde RooijRBuddaySOvaertTCKuhlEThe mechanical importance of myelination in the central nervous systemJ Mech Behav Biomed Mater201776119124
de RooijRKuhlEConstitutive modeling of brain tissue: current perspectivesAppl Mech Rev2016681010801
MenzelAKuhlEFrontiers in growth and remodelingMech Res Commun201242114
KoliasAGKirkpatrickPJHutchinsonPDecompressive craniectomy: past, present and futureNat Rev Neurol20139405415
BoyceMCParksDMArgonASLarge inelastic deformation of glassy polymers. Part i: rate dependent constitutive modelMech Mater198871533
FengYLeeC-HSunLJiSZhaoXCharacterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modelingJ Mech Behav Biomed Mater201765490501
SarronJ-CBlondeauCGuillaumeAOsmontDIdentification of linear viscoelastic constitutive modelsJ Biomech2000336685693
WeickenmeierJKurtMOzkayaEWintermarkMButts PaulyKKuhlEMagnetic resonance elastography of the brain: a comparison between pigs and humansJ Mech Behav Biomed Mater201877702710
WeickenmeierJButlerCYoungPGorielyAKuhlEThe mechanics of decompressive craniectomy: perssonalized simulationsComput Methods Appl Mech Eng2017314180195
RashidBDestradeMGilchristMDMechanical characterization of brain tissue in tension at dynamic strain ratesJ Mech Behav Biomed Mater2014334354
HolzapfelGANonlinear solid mechanics: a continuum approach for engineering science2000ChichesterWiley0980.74001
MurphyMCHustonJIIIJackCRJrGlaserKJSenjemMLChenJManducaAFelmleeJPEhmanRLMeasuring the characteristic topography of brain stiffness with magnetic resonance elastographyPLoS One2013812e81668
WeickenmeierJde RooijRBuddaySSteinmannPOvaertTKuhlEBrain stiffness increases with myelin contentActa Biomater201642265272
MillerKChinzeiKConstitutive modelling of brain tissue: experiment and theoryJ Biomech1997301111151121
NordahlCWDierkerDMostafaviISchumannCMRiveraSMAmaralDGVan EssenDCCortical folding abnormalities in autism revealed by surface-based morphometryJ Neurosci200727431172511735
RashidBDestradeMGilchristMDMechanical characterization of brain tissue in compression at dynamic strain ratesJ Mech Behav Biomed Mater2012102338
RashidBDestradeMGilchristMDTemperature effects on brain tissue in compressionJ Mech Behav Biomed Mater201214113118
Harris TC, de Rooij R, Kuhl E (2019) The shrinking brain: cerebral atrophy following traumatic brain injury. Ann Biomed Eng. https://doi.org/10.1007/s10439-018-02148-2
AwdryWVThomas the tank engine1946LeicesterEdmund Ward Ltd
KaliskeMRothertHFormulation and implementation of three-dimensional viscoelasticity at small and finite strainsComput Mech19971932282390890.73025
MillerKBiomech Brain2011BerlinSpringer
MacManusDPierratBMurphyJGGilchristMDynamic mechanical properties of murine brain tissue using micro-indentationJ Biomech2015481232133218
DemirayHA note on the elasticity of soft biological tissuesJ Biomech197253309311
ShreiberDIHaoHEliasRAProbing the influence of myelin and glia on the tensile properties of the spinal cordBiomech Model Mechanobiol200984311321
TamuraAHayashiSWatanabeINagayamaKMatsumotoTMechanical characterization of brain tissue in high-rate compressionJ Biomech Sci Eng200723115126
MillerKConstitutive model of brain tissue suitable for finite element analysis of surgical proceduresJ Biomech1999325531537
RazaviMJZhangTLiuTWangXCortical folding pattern and its consistency induced by biological growthSci Rep201551447710.1038/srep14477
Darvish K, Crandall JR (2001) Strain conditioning in the dynamic viscoelastic response of brain tissue. In: Proceedings of the 2001 bioengineering conference ASME, pp 893–894
MajdanMPlancikovaDBrazinovaARusnakMNieboerDFeiginVMaasAEpidemiology of traumatic brain injuries in europe: a cross-sectional analysisLancet Public Health201612e76e83
GreenMABilstonLESinkusRIn vivo brain viscoelastic properties measured by magnetic resonance elastographyNMR Biomed2008217755764
SchregelKnée TysiakEWGarteiserPGemeinhardtIProzorovskiTAktasOMerzHPetersenDWuerfelJSinkusRDemyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastographyProc Natl Acad Sci U S A20121091766506655
BuddaySSommerGSteinmannPHolzapfelGAKuhlEViscoelastic parameter identification of human brain tissueJ Mech Behav Biomed Mater201774463476
JohnsonCLTelzerEHMagnetic resonance elastography for examining developmental changes in the mechanical properties of the brainDev Cogn Neurosci201733176181
MurphyMCJonesDTJack JrCRGlaserKJSenjemM LManducaAFelmleeJ PCarterR EEhmanR LHuston IIIJRegional brain stiffness changes across the Alzhseimer’s disease spectrumNeuroImage Clin201610283290
BilstonLELiuZPhan-ThienNLarge strain behaviour of brain tissue in shear: some experimental data and differential constitutive modelBiorheology2001384335345
ChatelinSConstantinescoAWillingerRFifty years of brain tissue mechanical testing: from in vitro to in vivo investigationsBiorheology2010475–6255276
BarnesJMPrzybylaLWeaverVMTissue mechanics regulate brain development, homeostasis and diseaseJ Cell Sci201713017182
IwashitaMKataokaNToidaKKosodoYSystematic profiling of spatiotemporal tissue and cellular stiffness in the developing brainDevelopment20141411937933798
ArbogastKBMarguliesSSA fiber-reinforced composite model of the viscoelastic behavior of the brainstem in shearJ Biomech1999328865870
ChristAFFranzeKGautierHMoshayediPFawcettJFranklinRJKaradottirRTGuckJMechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopyJ Biomech2010431529862992
ChengSBilstonLEComputational model of the cerebral ventricles in hydrocephalusJ Biomech Eng20101325054501
WhittallKPMackayALGraebDANugentRALiDKPatyDWIn vivo measurement of t2 distributions and water contents in normal human brainMagn Reson Med19973713443
TepoleABPlochCJWongJGosainAKKuhlEGrowing skin: a computational model for skin expansion in reconstructive surgeryJ Mech Phys Solids201159102177219028678731270.74137
LuY-BFranzeKSeifertGSteinhäuserCKirchhoffFWolburgHGuckJJanmeyPWeiE-QKäsJViscoelastic properties of individual glial cells and neurons in the cnsProc Natl Acad Sci U S A2006103471775917764
KruseSARoseGHGlaserKJManducaAFelmleeJPJackCREhmanRLMagnetic resonance elastography of the brainNeuroimage2008391231237
PapazoglouSHirschSBraunJSackIMultifrequency inversion in magnetic resonance elastographyPhys Med Biol20125782329
KyriacouSKMohamedAMillerKNeffSBrain mechanics for neurosurgery: modeling issuesBiomech Model Mechanobiol200212151164
FletcherTLKoliasAGHutchinsonPJASutcliffeMPFThe wave of advance of advantageous genesPLoS ONE20149e102131
MarkertBA constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continuaTransp Porous Media20077034272372938
FisherRAThe wave of advance of advantageous genesAnn Eugen1937735536963.1111.04
GuertlerCAOkamotoRJSchmidtJLBadachhapeAAJohnsonCLBaylyPVMechanical properties of porcine brain tissue in vivo and ex vivo estimated by mr elastographyJ Biomech2018691018
ChenFZhouJLiYWangYLiLYueHMechanical properties of porcine brain tissue in the coronal plane: interregional variations of the corona radiataAnn Biomed Eng2015431229032910
BuddaySSommerGHaybaeckJSteinmannPHolzapfelGAKuhlERheological characterization of human brain tissueActa Biomater201760315329
ChenXSarntinoranontMBiphasic finite element model of solute transport for direct infusion into nervous tissueAnn Biomed Eng2007351221452158
DonnellyBMedigeJShear properties of human brain tissueJ Biomech Eng19971194423432
GorielyAWeickenmeierJKuhlEStress singularities in swelling soft solidsPhys Rev Lett2016117138001
VelardiFFraternaliFAngelilloMAnisotropic constitutive equations and experimental tensile behavior of brain tissueBiomech Model Mechanobiol2006515361
MorrisonPFLaskeDWBoboHOldfieldEHDedrickRLHigh-flow microinfusion: tissue penetration and pharmacodynamicsAm J Physiol Regul Integr Comp Physiol19942661R292R305
BuddaySSteinmannPKuhlEThe role of mechanics during brain developmentJ Mech Phys Solids201472759232623751328.74061
Garcia-GonzalezDJérusalemAGarzon-HernandezSZaeraRAriasAA continuum mechanics constitutive framework for transverse isotropic soft tissuesJ Mech Phys Solids20181122092243759588
DrapacaCSFritzJSA mechano-electrochemical model of brain neuro-mechanics: application to normal pressure hydrocephalusInt J Numer Anal Mod Ser B20121829328920351274.74076
MariappanYKGlaserKJEhmanRLMagnetic resonance elastography: a reviewClin Anat2010235497511
KansalATorquatoSHarshGChioccaEDeisboeckTSimulated brain tumor growth dynamics using a three-dimensional cellular automatonJ Theor Biol20002034367382
WangFHanYWangBPengQHuangXMillerKWittekAPrediction of brain deformations and risk of traumatic brain injur
References_xml – reference: ClaytonEHGeninGMBaylyPVTransmission, attenuation and reflection of shear waves in the human brainJ R Soc Interface201297628992910
– reference: FisherRAThe wave of advance of advantageous genesAnn Eugen1937735536963.1111.04
– reference: LiuY-LLiG-YHePMaoZ-QCaoYTemperature-dependent elastic properties of brain tissues measured with the shear wave elastography methodJ Mech Behav Biomed Mater201765652656
– reference: DrapacaCSFritzJSA mechano-electrochemical model of brain neuro-mechanics: application to normal pressure hydrocephalusInt J Numer Anal Mod Ser B20121829328920351274.74076
– reference: ShreiberDIHaoHEliasRAProbing the influence of myelin and glia on the tensile properties of the spinal cordBiomech Model Mechanobiol200984311321
– reference: ChatelinSVappouJRothSRaulJ-SWillingerRTowards child versus adult brain mechanical propertiesJ Mech Behav Biomed Mater20126166173
– reference: ThibaultKLMarguliesSSAge-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteriaJ Biomech1998311211191126
– reference: MacManusDBMurphyJGGilchristMDMechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatusJ Mech Behav Biomed Mater201887256266
– reference: ChristAFFranzeKGautierHMoshayediPFawcettJFranklinRJKaradottirRTGuckJMechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopyJ Biomech2010431529862992
– reference: JannesarSAllenMMillsSGibbonsABresnahanJCSalegioEASparreyCJCompressive mechanical characterization of non-human primate spinal cord white matterActa Biomater201874260269
– reference: JohnsonCLTelzerEHMagnetic resonance elastography for examining developmental changes in the mechanical properties of the brainDev Cogn Neurosci201733176181
– reference: RodriguezEKHogerAMcCullochADStress-dependent finite growth in soft elastic tissuesJ Biomech1994274455467
– reference: OgdenRLarge deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solidsProc R Soc A197232615675655840257.73034
– reference: AmbrosiDMollicaFOn the mechanics of a growing tumorInt J Eng Sci200240121297131619141201211.74161
– reference: GefenAGefenNZhuQRaghupathiRMarguliesSSAge-dependent changes in material properties of the brain and braincase of the ratJ Neurotrauma2003201111631177
– reference: LinSHungCComplications of cerebrospinal fluid shunts for hydrocephalus. A review of 204 casesJ Formos Med Assoc1979783258266
– reference: TylerWJThe mechanobiology of brain functionNat Rev Neurosci20121312867
– reference: Dutta-RoyTWittekAMillerKBiomechanical modelling of normal pressure hydrocephalusJ Biomech2008411022632271
– reference: BuddaySAndresSWalterBSteinmannPKuhlEWrinkling instabilities in soft bilayered systemsPhilos Trans A Math Phys Eng Sci2017375111
– reference: de RooijRKuhlEConstitutive modeling of brain tissue: current perspectivesAppl Mech Rev2016681010801
– reference: McIlvainGSchwarbHCohenNJTelzerEHJohnsonCLMechanical properties of the in vivo adolescent human brainDev Cogn Neurosci2018342733
– reference: KarimiANavidbakhshMAn experimental study on the mechanical properties of rat brain tissue using different stress-strain definitionsJ Mater Sci Mater Med201425716231630
– reference: RashidBDestradeMGilchristMDTemperature effects on brain tissue in compressionJ Mech Behav Biomed Mater201214113118
– reference: ChenXSarntinoranontMBiphasic finite element model of solute transport for direct infusion into nervous tissueAnn Biomed Eng2007351221452158
– reference: BuddaySSommerGBirklCLangkammerCHaybaeckJKohnertJBauerMPaulsenFSteinmannPKuhlEHolzapfelGAMechanical characterization of human brain tissueActa Biomater201748319340
– reference: WeberGAnandLFinite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solidsComput Methods Appl Mech Eng19907921732020731.73031
– reference: ChatelinSConstantinescoAWillingerRFifty years of brain tissue mechanical testing: from in vitro to in vivo investigationsBiorheology2010475–6255276
– reference: GorielyAWeickenmeierJKuhlEStress singularities in swelling soft solidsPhys Rev Lett2016117138001
– reference: BuddaySSteinmannPKuhlEPhysical biology of human brain developmentFront Cell Neurosci20159257
– reference: KasterTSackISamaniAMeasurement of the hyperelastic properties of ex vivo brain tissue slicesJ Biomech201144611581163
– reference: BilstonLESoft tissue rheology and its implications for elastography: challenges and opportunitiesNMR Biomed20183110e3832
– reference: KoliasAGKirkpatrickPJHutchinsonPDecompressive craniectomy: past, present and futureNat Rev Neurol20139405415
– reference: Van DommelenJVan der SandeTHrapkoMPetersGMechanical properties of brain tissue by indentation: interregional variationJ Mech Behav Biomed Mater20103158166
– reference: ChengSBilstonLEUnconfined compression of white matterJ Biomech2007401117124
– reference: FengYLeeC-HSunLJiSZhaoXCharacterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modelingJ Mech Behav Biomed Mater201765490501
– reference: MurphyMCJonesDTJack JrCRGlaserKJSenjemM LManducaAFelmleeJ PCarterR EEhmanR LHuston IIIJRegional brain stiffness changes across the Alzhseimer’s disease spectrumNeuroImage Clin201610283290
– reference: Antonovaite N, Beekmans SV, Hol EM, Wadman WJ, Iannuzzi D (2018) Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping. arXiv preprint arXiv:1802.02245
– reference: Darvish K, Crandall JR (2001) Strain conditioning in the dynamic viscoelastic response of brain tissue. In: Proceedings of the 2001 bioengineering conference ASME, pp 893–894
– reference: GreenMABilstonLESinkusRIn vivo brain viscoelastic properties measured by magnetic resonance elastographyNMR Biomed2008217755764
– reference: WrightRMPostAHoshizakiBRameshKTA multiscale computational approach to estimating axonal damage under inertial loading of the headJ Neurotrauma2013302102118
– reference: NingXZhuQLanirYMarguliesSSA transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformationJ Biomech Eng20061286925933
– reference: WeickenmeierJJuckerMKuhlEGorielyAA physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosisJ Mech Phys Solids2019124264281
– reference: PrangeMTMarguliesSSRegional, directional, and age-dependent properties of the brain undergoing large deformationJ Biomech Eng20021242244252
– reference: SimoJAlgorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theoryComput Methods Appl Mech Eng19929916111211828730764.73089
– reference: FranceschiniGBigoniDRegitnigPHolzapfelGABrain tissue deforms similarly to filled elastomers and follows consolidation theoryJ Mech Phys Solids20065412259226201162.74303
– reference: HarrisonPThe neuropathology of schizophrenia: a critical review of the data and their interpretationBrain19991122593624
– reference: VelardiFFraternaliFAngelilloMAnisotropic constitutive equations and experimental tensile behavior of brain tissueBiomech Model Mechanobiol2006515361
– reference: MurphyMCHustonJIIIJackCRJrGlaserKJSenjemMLChenJManducaAFelmleeJPEhmanRLMeasuring the characteristic topography of brain stiffness with magnetic resonance elastographyPLoS One2013812e81668
– reference: PapazoglouSHirschSBraunJSackIMultifrequency inversion in magnetic resonance elastographyPhys Med Biol20125782329
– reference: Samadi-DookiAVoyiadjisGZStoutRWA combined experimental, modeling, and computational approach to interpret the viscoelastic response of the white matter brain tissue during indentationJ Mech Behav Biomed Mater2018772433
– reference: WhittallKPMackayALGraebDANugentRALiDKPatyDWIn vivo measurement of t2 distributions and water contents in normal human brainMagn Reson Med19973713443
– reference: FinanJDElkinBSPearsonEMKalbianILMorrisonBIIIViscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and ageAnn Biomed Eng20124017078
– reference: BuddaySNayRde RooijRSteinmannPWyrobekTOvaertTCKuhlEMechanical properties of gray and white matter brain tissue by indentationJ Mech Behav Biomed Mater201546318330
– reference: MariappanYKGlaserKJEhmanRLMagnetic resonance elastography: a reviewClin Anat2010235497511
– reference: NicolleSLounisMWillingerRShear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental resultsStapp Car Crash J200448239258
– reference: PrevostTPBalakrishnanASureshSSocrateSBiomechanics of brain tissueActa Biomater201178395
– reference: MeaneyDFMorrisonBBassCDThe mechanics of traumaic brain injury: a review of what we know and what we need to know for reducing its societal burdenJ Biomech Eng20141362021008
– reference: MillerKConstitutive model of brain tissue suitable for finite element analysis of surgical proceduresJ Biomech1999325531537
– reference: KuhlEMaasRHimpelGMenzelAComputational modeling of arterial wall growth. Attempts towards patient-specific simulations based on computer tomographyBiomech Model Mechanobiol200765321331
– reference: SidoroffFNonlinear viscoelastic model with intermediate configurationJ Mec1974134679713373429
– reference: GiordanoCKleivenSConnecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissueJ R Soc Interface2014119120130914
– reference: SarronJ-CBlondeauCGuillaumeAOsmontDIdentification of linear viscoelastic constitutive modelsJ Biomech2000336685693
– reference: AmbrosiDAteshianGArrudaECowinSDumaisJGorielyAHolzapfelGAHumphreyJKemkemerRKuhlEPerspectives on biological growth and remodelingJ Mech Phys Solids201159486388328095851270.74134
– reference: RichmanDPStewartRMHutchinsonJCavincssVSJrMechanical mode of brain convolutional deve lopmentScience19751891821
– reference: VappouJBretonEChoquetPWillingerRConstantinescoAAssessment of in vivo and post-mortem mechanical behavior of brain tissue using magnetic resonance elastographyJ Biomech2008411429542959
– reference: BarnesJMPrzybylaLWeaverVMTissue mechanics regulate brain development, homeostasis and diseaseJ Cell Sci201713017182
– reference: GovindjeeSReeseSA presentation and comparison of two large deformation viscoelastic modelsJ Eng Mater Technol19971195251255
– reference: WeickenmeierJde RooijRBuddaySSteinmannPOvaertTKuhlEBrain stiffness increases with myelin contentActa Biomater201642265272
– reference: BuddaySSommerGHaybaeckJSteinmannPHolzapfelGAKuhlERheological characterization of human brain tissueActa Biomater201760315329
– reference: VoyiadjisGZSamadi-DookiAHyperelastic modeling of the human brain tissue: effects of no-slip boundary condition and compressibility on the uniaxial deformationJ Mech Behav Biomed Mater2018836378
– reference: MillerKBiomech Brain2011BerlinSpringer
– reference: BockASOlavarriaJFLeiglandLATaberENJespersenSNKroenkeCDDiffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: an experimental model in the ferretFront Syst Neurosci20104149
– reference: GuertlerCAOkamotoRJSchmidtJLBadachhapeAAJohnsonCLBaylyPVMechanical properties of porcine brain tissue in vivo and ex vivo estimated by mr elastographyJ Biomech2018691018
– reference: KansalATorquatoSHarshGChioccaEDeisboeckTSimulated brain tumor growth dynamics using a three-dimensional cellular automatonJ Theor Biol20002034367382
– reference: PervinFChenWWDynamic mechanical response of bovine gray matter and white matter brain tissues under compressionJ Biomech2009426731735
– reference: QianLZhaoHGuoYLiYZhouMYangLWangZSunYInfluence of strain rate on indentation response of porcine brainJ Mech Behav Biomed Mater201882210217
– reference: Comellas E, Steinmann P (2017) A non-linear poroelastic constitutive model for the computational modelling of brain tissue behaviour. In: XIV international conference on computational plasticity
– reference: ReeseSGovindjeeSA theory of finite viscoelasticity and numerical aspectsInt J Solids Struct19983526–27345534820918.73028
– reference: BuddaySSteinmannPKuhlESecondary instabilities modulate cortical complexity in the mammalian brainPhilos Mag20159528–3032443256
– reference: GalfordJEMcElhaneyJHA viscoelastic study of scalp, brain, and duraJ Biomech197032211221
– reference: JinXZhuFMaoHShenMYangKHA comprehensive experimental study on material properties of human brain tissueJ Biomech2013461627952801
– reference: StøverudKHDarcisMHelmigRHassanizadehSMModeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissueTransp Porous Media20129211191432900644
– reference: LuY-BFranzeKSeifertGSteinhäuserCKirchhoffFWolburgHGuckJJanmeyPWeiE-QKäsJViscoelastic properties of individual glial cells and neurons in the cnsProc Natl Acad Sci U S A2006103471775917764
– reference: ChengSBilstonLEComputational model of the cerebral ventricles in hydrocephalusJ Biomech Eng20101325054501
– reference: Welker W, Johnson IJ, Noe A (2014) Comparative mammalian brain collections. http://brainmuseum.org. Accessed 11 Oct 2014
– reference: ZhaoWChoateBJiSMaterial properties of the brain in injury-relevant conditions-experiments and computational modelingJ Mech Behav Biomed Mater201880222234
– reference: McCrackenPJManducaAFelmleeJEhmanRLMechanical transient-based magnetic resonance elastographyMagn Reson Med2005533628639
– reference: WeickenmeierJSaezPButlerCYoungPGorielyAKuhlEBulging brainsJ Elast20171291–219721236947861373.74076
– reference: BoyceMCParksDMArgonASLarge inelastic deformation of glassy polymers. Part i: rate dependent constitutive modelMech Mater198871533
– reference: ArbogastKBMarguliesSSA fiber-reinforced composite model of the viscoelastic behavior of the brainstem in shearJ Biomech1999328865870
– reference: StreitbergerK-JSackIKreftingDPfüllerCBraunJPaulFWuerfelJBrain viscoelasticity alteration in chronic-progressive multiple sclerosisPloS One201271e29888
– reference: MaikosJTQianZMetaxasDShreiberDIFinite element analysis of spinal cord injury in the ratJ Neurotrauma2008257795816
– reference: JérusalemADaoMContinuum modeling of a neuronal cell under blast loadingActa Biomater20128933603371
– reference: BuddaySSommerGPaulsenFHolzapfelGSteinmannPKuhlERegion- and loading-specific finite viscoelasticity of human brain tissueProc Appl Math Mech20181812
– reference: BainACMeaneyDFTissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injuryJ Biomech Eng20001226615622
– reference: HardyWNFosterCDMasonMJYangKHKingAITashmanSInvestigation of head injury mechanisms using neutral density technology and high-speed biplanar x-rayStapp Car Crash J200145337368
– reference: DennerllTJLamoureuxPBuxbaumREHeidemannSRThe cytomechanics of axonal elongation and retractionJ Cell Biol1989109630733083
– reference: VernerSGarikipatiKAmyloid β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort studyLancet Neurol201312357367
– reference: TullyBVentikosYCerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalusJ Fluid Mech201166718821527544901225.76317
– reference: EhlersWWagnerAMulti-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problemComput Methods Biomech Biomed Eng2015188861879
– reference: ChenFZhouJLiYWangYLiLYueHMechanical properties of porcine brain tissue in the coronal plane: interregional variations of the corona radiataAnn Biomed Eng2015431229032910
– reference: AmarMBGorielyAGrowth and instability in elastic tissuesJ Mech Phys Solids200553102284231921676361120.74336
– reference: MorrisonPFLaskeDWBoboHOldfieldEHDedrickRLHigh-flow microinfusion: tissue penetration and pharmacodynamicsAm J Physiol Regul Integr Comp Physiol19942661R292R305
– reference: FallensteinGHulceVDMelvinJWDynamic mechanical properties of human brain tissueJ Biomech196923217226
– reference: SchregelKnée TysiakEWGarteiserPGemeinhardtIProzorovskiTAktasOMerzHPetersenDWuerfelJSinkusRDemyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastographyProc Natl Acad Sci U S A20121091766506655
– reference: Harris TC, de Rooij R, Kuhl E (2019) The shrinking brain: cerebral atrophy following traumatic brain injury. Ann Biomed Eng. https://doi.org/10.1007/s10439-018-02148-2
– reference: GefenAMarguliesSSAre in vivo and in situ brain tissues mechanically similar?J Biomech20043713391352
– reference: GorielyABuddaySKuhlEChapter two-neuromechanics: from neurons to brainAdv Appl Mech20154879139
– reference: NordahlCWDierkerDMostafaviISchumannCMRiveraSMAmaralDGVan EssenDCCortical folding abnormalities in autism revealed by surface-based morphometryJ Neurosci200727431172511735
– reference: JackCRHoltzmanDMBiomarker modeling of Alzheimer’s diseaseNeuron20138013471358
– reference: ShuckLAdvaniSRheological response of human brain tissue in shearJ Basic Eng1972944905911
– reference: KyriacouSKMohamedAMillerKNeffSBrain mechanics for neurosurgery: modeling issuesBiomech Model Mechanobiol200212151164
– reference: GentAA new constitutive relation for rubberRubber Chem Technol199669159611396825
– reference: KaczmarekMSubramaniamRPNeffSRThe hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometryBull Math Biol19975922953230904.92026
– reference: WeickenmeierJde RooijRBuddaySOvaertTCKuhlEThe mechanical importance of myelination in the central nervous systemJ Mech Behav Biomed Mater201776119124
– reference: FletcherTLKoliasAGHutchinsonPJASutcliffeMPFThe wave of advance of advantageous genesPLoS ONE20149e102131
– reference: MillerKChinzeiKConstitutive modelling of brain tissue: experiment and theoryJ Biomech1997301111151121
– reference: NieXSanbornBWeerasooriyaTChenWHigh-rate bulk and shear responses of bovine brain tissueInt J Impact Eng2013535661
– reference: WeickenmeierJButlerCYoungPGorielyAKuhlEThe mechanics of decompressive craniectomy: perssonalized simulationsComput Methods Appl Mech Eng2017314180195
– reference: BlumenthalNRHermansonOHeimrichBShastriVPStochastic nanoroughness modulates neuron-astrocyte interactions and function via mechanosensing cation channelsProc Natl Acad Sci U S A2014111451612416129
– reference: WeickenmeierJKuhlEGorielyAMultiphysics of prion-like diseases: progression and atrophyPhys Rev Lett2018121158101
– reference: LinningerAASweetmanBPennRNormal and hydrocephalic brain dynamics: the role of reduced cerebrospinal fluid reabsorption in ventricular enlargementAnn Biomed Eng200937714341447
– reference: HakimSAdamsRThe special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure: Observations on cerebrospinal fluid hydrodynamicsJ Neurol Sci196524307327
– reference: MajdanMPlancikovaDBrazinovaARusnakMNieboerDFeiginVMaasAEpidemiology of traumatic brain injuries in europe: a cross-sectional analysisLancet Public Health201612e76e83
– reference: RazaviMJZhangTLiuTWangXCortical folding pattern and its consistency induced by biological growthSci Rep201551447710.1038/srep14477
– reference: ForteAEGentlemanSMDiniDOn the characterization of the heterogeneous mechanical response of human brain tissueBiomech Model Mechanobiol201616907920
– reference: WeickenmeierJKurtMOzkayaEWintermarkMButts PaulyKKuhlEMagnetic resonance elastography of the brain: a comparison between pigs and humansJ Mech Behav Biomed Mater201877702710
– reference: BuddaySRaybaudCKuhlEA mechanical model predicts morphological abnormalities in the developing human brainSci Rep20144564410.1038/srep05644
– reference: BuddaySSteinmannPKuhlEThe role of mechanics during brain developmentJ Mech Phys Solids201472759232623751328.74061
– reference: TepoleABPlochCJWongJGosainAKKuhlEGrowing skin: a computational model for skin expansion in reconstructive surgeryJ Mech Phys Solids201159102177219028678731270.74137
– reference: TamuraAHayashiSWatanabeINagayamaKMatsumotoTMechanical characterization of brain tissue in high-rate compressionJ Biomech Sci Eng200723115126
– reference: ClootsRVan DommelenJNybergTKleivenSGeersMMicromechanics of diffuse axonal injury: influence of axonal orientation and anisotropyBiomech Model Mechanobiol2011103413422
– reference: WangXStudholmeCGrigsbyPLFriasAECarlsonVCCKroenkeCDFolding, but not surface area expansion, is associated with cellular morphological maturation in the fetal cerebral cortexJ Neurosci201737819711983
– reference: ClootsRJVan DommelenJKleivenSGeersMMulti-scale mechanics of traumatic brain injury: predicting axonal strains from head loadsBiomech Model Mechanobiol2013121137150
– reference: KruseSARoseGHGlaserKJManducaAFelmleeJPJackCREhmanRLMagnetic resonance elastography of the brainNeuroimage2008391231237
– reference: MacManusDPierratBMurphyJGGilchristMDynamic mechanical properties of murine brain tissue using micro-indentationJ Biomech2015481232133218
– reference: MillerKChinzeiKMechanical properties of brain tissue in tensionJ Biomech2002354483490
– reference: TallinenTChungJYRousseauFGirardNLefèvreJMahadevanLOn the growth and form of cortical convolutionsNat Phys2016126588593
– reference: WuerfelJPaulFBeierbachBHamhaberUKlattDPapazoglouSZippFMartusPBraunJSackIMr-elastography reveals degradation of tissue integrity in multiple sclerosisNeuroimage201049325202525
– reference: Koser DE, Moeendarbary E, Kuerten S, Franze K (2018) Predicting local tissue mechanics using immunohistochemistry, p 358119. bioRxiv
– reference: MarkertBA constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continuaTransp Porous Media20077034272372938
– reference: WeickenmeierJKurtMOzkayaEde RooijROvaertTEhmanRButts PaulyKKuhlEBrain stiffens post mortemJ Mech Behav Biomed Master2018848898
– reference: ElkinBSIlankovanAMorrisonBAge-dependent regional mechanical properties of the rat hippocampus and cortexJ Biomech Eng20101321011010
– reference: KoserDEThompsonAJFosterSKDwivedyAPillaiEKSheridanGKSvobodaHVianaMda F CostaLGuckJMechanosensing is critical for axon growth in the developing brainNat Neurosci201619121592
– reference: NagashimaTTamakiNMatsumotoSHorwitzBSeguchiYBiomechanics of hydrocephalus: a new theoretical modelNeurosurgery1987216898904
– reference: Alzheimer’s Disease International (2016) Improving healthcare for people living with dementia. Coverage, quality and costs now and in the future. World Alzheimer Report
– reference: HiscoxLVJohnsonCLMcGarryMDPerrinsMLittlejohnAvan BeekEJRobertsNStarrJMHigh-resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adultsNeurobiol Aging201865158167
– reference: LabusKMPuttlitzCMViscoelasticity of brain corpus callosum in biaxial tensionJ Mech Phys Solids201696591604
– reference: GaroAHrapkoMVan DommelenJPetersGTowards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparationBiorheology20074415158
– reference: BlümckeIVintersHVArmstrongDAronicaEThomMSpreaficoRMalformations of cortical development and epilepsiesEpileptics Disord2009113181193
– reference: BoboRHLaskeDWAkbasakAMorrisonPFDedrickRLOldfieldEHConvection-enhanced delivery of macromolecules in the brainProc Natl Acad Sci U S A199491620762080
– reference: HrapkoMVan DommelenJPetersGWismansJThe mechanical behaviour of brain tissue: large strain response and constitutive modellingBiorheology2006435623636
– reference: ZhangWLiuL-FXiongY-JLiuY-FYuS-BWuC-WGuoWEffect of in vitro storage duration on measured mechanical properties of brain tissueSci Rep2018811247
– reference: HolzapfelGANonlinear solid mechanics: a continuum approach for engineering science2000ChichesterWiley0980.74001
– reference: LiuY-LLiuDXuLSuCLiG-YQianL-XCaoYIn vivo and ex vivo elastic properties of brain tissues measured with ultrasound elastographyJ Mech Behav Biomed Mater201883120125
– reference: ShulyakovAVCenkowskiSSBuistRJDel BigioMRAge-dependence of intracranial viscoelastic properties in living ratsJ Mech Behav Biomed Mater201143484497
– reference: BuddaySSommerGSteinmannPHolzapfelGAKuhlEViscoelastic parameter identification of human brain tissueJ Mech Behav Biomed Mater201774463476
– reference: DonnellyBMedigeJShear properties of human brain tissueJ Biomech Eng19971194423432
– reference: KoserDEMoeendarbaryEHanneJKuertenSFranzeKCNS cell distribution and axon orientation determine local spinal cord mechanical propertiesBiophys J2015108921372147
– reference: KaliskeMRothertHFormulation and implementation of three-dimensional viscoelasticity at small and finite strainsComput Mech19971932282390890.73025
– reference: SackIStreitbergerK-JKreftingDPaulFBraunJThe influence of physiological aging and atrophy on brain viscoelastic properties in humansPloS one201169e23451
– reference: Garcia-GonzalezDJérusalemAGarzon-HernandezSZaeraRAriasAA continuum mechanics constitutive framework for transverse isotropic soft tissuesJ Mech Phys Solids20181122092243759588
– reference: GorielyAGeersMGHolzapfelGAJayamohanJJérusalemASivaloganathanSSquierWvan DommelenJAWatersSKuhlEMechanics of the brain: perspectives, challenges, and opportunitiesBiomech Model Mechanobiol2015145931965
– reference: MacManusDBPierratBMurphyJGGilchristMDRegion and species dependent mechanical properties of adolescent and young adult brain tissueSci Rep20177113729
– reference: RashidBDestradeMGilchristMDMechanical characterization of brain tissue in simple shear at dynamic strain ratesJ Mech Behav Biomed Mater2013287185
– reference: WangFHanYWangBPengQHuangXMillerKWittekAPrediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive modelBiomech Model Mechanobiol201817411651185
– reference: HolzapfelGASimoJCA viscoelastic constitutive model for continuous media at finite thermomechanical changesInt J Solids Struct199633301930340909.73038
– reference: LiXvon HolstHKleivenSInfluence of gravity for optimal head positions in the treatment of head injury patientsActa Neurochir20111531020572064
– reference: DemirayHA note on the elasticity of soft biological tissuesJ Biomech197253309311
– reference: MenzelAKuhlEFrontiers in growth and remodelingMech Res Commun201242114
– reference: BilstonLENeural tissue biomechanics2011HeidelbergSpringer
– reference: RashidBDestradeMGilchristMDMechanical characterization of brain tissue in compression at dynamic strain ratesJ Mech Behav Biomed Mater2012102338
– reference: FengYOkamotoRJNamaniRGeninGMBaylyPVMeasurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matterJ Mech Behav Biomed Mater201323117132
– reference: IwashitaMKataokaNToidaKKosodoYSystematic profiling of spatiotemporal tissue and cellular stiffness in the developing brainDevelopment20141411937933798
– reference: BaylyPVClaytonEHGeninGMQuantitative imaging methods for the development and validation of brain biomechanics modelsAnnu Rev Biomed Eng201214369396
– reference: EhlersWEipperGFinite elastic deformations in liquid-saturated and empty porous solidsTransp Porous Media19993411791911791216
– reference: GerischerLMFehlnerAKöbeTPrehnKAntonenkoDGrittnerUBraunJSackIFlöelACombining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of alzheimer’s disease based on magnetic resonance imagingNeuroImage Clin201818485493
– reference: AwdryWVThomas the tank engine1946LeicesterEdmund Ward Ltd
– reference: Estes M, MacElhaney JH (1970) Response of brain tissue to compressive loading. In: American society of mechanical engineers biomechanical and human factors conference
– reference: PogodaKChinLGeorgesPCByfieldFJBuckiRKimRWeaverMWellsRGMarcinkiewiczCJanmeyPACompression stiffening of brain and its effect on mechanosensing by glioma cellsNew J Phys2014167075002
– reference: BilstonLELiuZPhan-ThienNLarge strain behaviour of brain tissue in shear: some experimental data and differential constitutive modelBiorheology2001384335345
– reference: JuckerMWalkerLCSelf-propagation of pathogenic protein aggregates in neurodegenerative diseasesNature20135014551
– reference: RashidBDestradeMGilchristMDMechanical characterization of brain tissue in tension at dynamic strain ratesJ Mech Behav Biomed Mater2014334354
– reference: SackIBeierbachBWuerfelJKlattDHamhaberUPapazoglouSMartusPBraunJThe impact of aging and gender on brain viscoelasticityNeuroimage2009463652657
SSID ssj0054992
Score 2.6518283
Snippet Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing...
Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 1187
SubjectTerms Brain
Computer simulation
Constitutive models
Continuum mechanics
Diagnostic software
Diagnostic systems
Engineering
Head injuries
Mathematical and Computational Engineering
Mathematical models
Mechanical tests
Nonlinear equations
Numerical prediction
Original Paper
Performance prediction
Shades
Simulation
Tissues
Title Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue
URI https://link.springer.com/article/10.1007/s11831-019-09352-w
https://www.proquest.com/docview/2436158807
Volume 27
WOSCitedRecordID wos000565732400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 1886-1784
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054992
  issn: 1134-3060
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRKMgDI5YaO4lttoKoWKgQLVW3yI5t6JKiJlDx77HThAJigS1SnrqH_V3uvjuAc85kylhgsAppF3suI5aEaxwpQozq2lCo5bAJNhjwyUTcV6SwvK52r1OS5Uq9Irs56_Ohry_xcbABL9Zhw2133Lvjw3Bcr78-4ClznAH1__zjbkWV-f0Z34Dlj1xoucX0m__7uF3YqSAl6i1tYA_WTNaCZgUvUeW8eQu2v_Qe3Idxf2qLdzR8ltrkaGbRlR8WcYl6aJkuQLMMOXCI7oznBntVopHvyJE9IZlp5GeoeSb7551oVKrwAB77N6PrW1wNWcAvhAUFVrHWkeWxISqNhAutpbS-Z1oUW-GiMSm4pSYNFEuJZSYU3B1QB1osoS70tIIeQiObZeYIkEM2jDvdWm2jUGolu1zHghlu3CsUDdrQqWWdVJ6SJySkDlS5VYS14aKW7er0qquyF3DiBJyUAk4Wx3-7_AS2iA-Vy_KwDjSK-as5hc30rZjm87PSgj4A1dnBKg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RNFEPoqgRRe3Bo0u2dls7b2gkGIEYmYTb0m6tchmGTYn_ve3YRI0XvS3ZZ957ff399r4AzhnlMaWOtIRLbMvUMlocs8TyBMZS2MoNxGLYBB0M2Hgc3JdFYVmV7V6FJAtPvSx209ZnqK9J8dGwwZqvwpqrdyyTyPcwHFX-1xCeIsbpEPPP37fLUpnfn_ENWP6IhRZbTKf-v4_bge0SUqL2wgZ2YUWmDaiX8BKVizdrwNaX3oN7MOpMVP6Ohs88kRmaKnRlhkVcojZahAvQNEUaHKK-NLXBRpUoNB050ifE0wSZGWqmkv3zThQWKtyHx85NeN21yiEL1gumTm4JP0k8xXyJRewFmlpzrkzPNM9XgWZjPGCKyNgRNMaKSjdg-oBo0KIw0dRTBeQAauk0lYeANLKhTOtWJcpzeSK4zRI_oJJJ_QpBnCa0KllH5UrJIuwSDaq0F6FNuKhkuzy97KpsBBxpAUeFgKP50d8uP4ONbtjvRb3bwd0xbGJDm4tUsRbU8tmrPIH1-C2fZLPTwpo-AO6ZxA4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oGqMHUdSIovbg0Y1s99GuN3wQjUpIQOJt025b5bIQWCX-ezvLImi8GG-b7DMzbff7OvPNAJxyJhLGXO1I36s7qGV0BOXKCSSlWtaNH8lpswnWavHn56i9oOLPs91nIcmppgGrNKXZ-VCZ87nwzY5EpMGY7mMhhDNZhhUfmwYhX-_0Zmsxkp883ul6uP8f1gvZzO_P-AYyf8RF899Ns_z_D92CzQJqksZ0bGzDkk4rUC5gJykm9bgCGws1CXeg1-yb7IN0XoXSYzIw5BKbSFyQBpmGEcggJRY0kkeNmmF0MelipY70hYhUEeythgr3rztJN3ftLjw1b7pXt07RfMEZUuZmjgyVCgwPNZVJEFnKLYTBWmpBaCLL0kTEjacTV7KEGqb9iNsDz4IZQz1LSU3k7UEpHaR6H4hFPIxbnxtlAl8oKepchRHTXNtXSM-tQm1m97iYQeOY-p4FW3Z1YVU4m9l5fnpebRkNHFsDx7mB48nB3y4_gbX2dTN-uGvdH8I6RTadZ5DVoJSN3vQRrCbvWX88Os4H1idH08zy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fifty+Shades+of+Brain%3A+A+Review+on+the+Mechanical+Testing+and+Modeling+of+Brain+Tissue&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Budday+Silvia&rft.au=Ovaert%2C+Timothy+C&rft.au=Holzapfel%2C+Gerhard+A&rft.au=Steinmann%2C+Paul&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=27&rft.issue=4&rft.spage=1187&rft.epage=1230&rft_id=info:doi/10.1007%2Fs11831-019-09352-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon