Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue
Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational simulations–based on the field...
Gespeichert in:
| Veröffentlicht in: | Archives of computational methods in engineering Jg. 27; H. 4; S. 1187 - 1230 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.09.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1134-3060, 1886-1784 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational simulations–based on the field equations of nonlinear continuum mechanics–can provide important insights into the underlying mechanisms of brain injury and disease that go beyond the possibilities of traditional diagnostic tools. Realistic numerical predictions, however, require mechanical models that are capable of capturing the complex and unique characteristics of this ultrasoft, heterogeneous, and active tissue. In recent years, contradictory experimental results have caused confusion and hindered rapid progress. In this review, we carefully assess the challenges associated with brain tissue testing and modeling, and work out the most important characteristics of brain tissue behavior on different length and time scales. Depending on the application of interest, we propose appropriate mechanical modeling approaches that are as complex as necessary but as simple as possible. This comprehensive review will, on the one hand, stimulate the design of new experiments and, on the other hand, guide the selection of appropriate constitutive models for specific applications. Mechanical models that capture the complex behavior of nervous tissues and are accurately calibrated with reliable and comprehensive experimental data are key to performing reliable predictive simulations. Ultimately, mathematical modeling and computational simulations of the brain are useful for both biomedical and clinical communities, and cover a wide range of applications ranging from predicting disease progression and estimating injury risk to planning surgical procedures. |
|---|---|
| AbstractList | Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational simulations–based on the field equations of nonlinear continuum mechanics–can provide important insights into the underlying mechanisms of brain injury and disease that go beyond the possibilities of traditional diagnostic tools. Realistic numerical predictions, however, require mechanical models that are capable of capturing the complex and unique characteristics of this ultrasoft, heterogeneous, and active tissue. In recent years, contradictory experimental results have caused confusion and hindered rapid progress. In this review, we carefully assess the challenges associated with brain tissue testing and modeling, and work out the most important characteristics of brain tissue behavior on different length and time scales. Depending on the application of interest, we propose appropriate mechanical modeling approaches that are as complex as necessary but as simple as possible. This comprehensive review will, on the one hand, stimulate the design of new experiments and, on the other hand, guide the selection of appropriate constitutive models for specific applications. Mechanical models that capture the complex behavior of nervous tissues and are accurately calibrated with reliable and comprehensive experimental data are key to performing reliable predictive simulations. Ultimately, mathematical modeling and computational simulations of the brain are useful for both biomedical and clinical communities, and cover a wide range of applications ranging from predicting disease progression and estimating injury risk to planning surgical procedures. Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing evidence confirms that mechanics plays a critical role in modulating brain function and dysfunction. Computational simulations–based on the field equations of nonlinear continuum mechanics–can provide important insights into the underlying mechanisms of brain injury and disease that go beyond the possibilities of traditional diagnostic tools. Realistic numerical predictions, however, require mechanical models that are capable of capturing the complex and unique characteristics of this ultrasoft, heterogeneous, and active tissue. In recent years, contradictory experimental results have caused confusion and hindered rapid progress. In this review, we carefully assess the challenges associated with brain tissue testing and modeling, and work out the most important characteristics of brain tissue behavior on different length and time scales. Depending on the application of interest, we propose appropriate mechanical modeling approaches that are as complex as necessary but as simple as possible. This comprehensive review will, on the one hand, stimulate the design of new experiments and, on the other hand, guide the selection of appropriate constitutive models for specific applications. Mechanical models that capture the complex behavior of nervous tissues and are accurately calibrated with reliable and comprehensive experimental data are key to performing reliable predictive simulations. Ultimately, mathematical modeling and computational simulations of the brain are useful for both biomedical and clinical communities, and cover a wide range of applications ranging from predicting disease progression and estimating injury risk to planning surgical procedures. |
| Author | Budday, Silvia Ovaert, Timothy C. Holzapfel, Gerhard A. Steinmann, Paul Kuhl, Ellen |
| Author_xml | – sequence: 1 givenname: Silvia orcidid: 0000-0002-7072-8174 surname: Budday fullname: Budday, Silvia email: silvia.budday@fau.de organization: Friedrich-Alexander-University Erlangen-Nürnberg – sequence: 2 givenname: Timothy C. surname: Ovaert fullname: Ovaert, Timothy C. organization: University of Notre Dame – sequence: 3 givenname: Gerhard A. surname: Holzapfel fullname: Holzapfel, Gerhard A. organization: Graz University of Technology, Norwegian University of Technology – sequence: 4 givenname: Paul surname: Steinmann fullname: Steinmann, Paul organization: Friedrich-Alexander-University Erlangen-Nürnberg, University of Glasgow – sequence: 5 givenname: Ellen surname: Kuhl fullname: Kuhl, Ellen organization: Stanford University |
| BookMark | eNpFkFtLAzEQhYMo2Fb_gE8Bn6O5bS6-1WJVaBG0-hqyuxO7pWTrZmvx35taxac5A-fMHL4hOo5tBIQuGL1ilOrrxJgRjFBmCbWi4GR3hAbMGEWYNvI4ayYkEVTRUzRMaUVpIa3lA_Q2bUL_hV-WvoaE24BvO9_EGzzGz_DZwA63EfdLwHOolj42lV_jBaS-ie_YxxrP2xrW--UviRdNSls4QyfBrxOc_84Rep3eLSYPZPZ0_zgZz8iGa9aTUtV1EYwCXlaFhVJ4H6jmrFDBGm68NUFAxUpd8aBBWpOFMFIFLiTlwYoRujzc3XTtxzYXc6t228X80nEpFCuMoTq7xMGVNl0uC92_i1G3B-gOAF0G6H4Aup34BgsjZEY |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C JQ2 |
| DOI | 10.1007/s11831-019-09352-w |
| DatabaseName | Springer Nature OA Free Journals ProQuest Computer Science Collection |
| DatabaseTitle | ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1886-1784 |
| EndPage | 1230 |
| ExternalDocumentID | 10_1007_s11831_019_09352_w |
| GrantInformation_xml | – fundername: German Research Foundation grantid: BU 3728/1-1 – fundername: Emerging Fields Initiative by the FAU grantid: 4_T ech_04 – fundername: Stanford University grantid: Bio-X IIP seed grant – fundername: German Research Foundation grantid: STE 544/50 – fundername: Emerging Talents Initiative by the FAU grantid: ETI – fundername: Alexander von Humboldt-Stiftung grantid: Humboldt Research Award – fundername: National Science Foundation grantid: CMMI 1727268 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW K60 K6V K6~ K7- KDC KOV L6V LLZTM M0C M0N M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z88 ZMTXR _50 ~EX AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA JQ2 JZLTJ |
| ID | FETCH-LOGICAL-p271t-b6dd5f86e2bc59eb3aaf072156f9828a98f3ec1b7c2f7e4987c23846f23402f93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 315 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565732400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1134-3060 |
| IngestDate | Wed Sep 17 23:58:42 EDT 2025 Fri Feb 21 02:32:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p271t-b6dd5f86e2bc59eb3aaf072156f9828a98f3ec1b7c2f7e4987c23846f23402f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7072-8174 |
| OpenAccessLink | https://link.springer.com/10.1007/s11831-019-09352-w |
| PQID | 2436158807 |
| PQPubID | 1486352 |
| PageCount | 44 |
| ParticipantIDs | proquest_journals_2436158807 springer_journals_10_1007_s11831_019_09352_w |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | State of the Art Reviews |
| PublicationTitle | Archives of computational methods in engineering |
| PublicationTitleAbbrev | Arch Computat Methods Eng |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | LabusKMPuttlitzCMViscoelasticity of brain corpus callosum in biaxial tensionJ Mech Phys Solids201696591604 Antonovaite N, Beekmans SV, Hol EM, Wadman WJ, Iannuzzi D (2018) Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping. arXiv preprint arXiv:1802.02245 OgdenRLarge deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solidsProc R Soc A197232615675655840257.73034 QianLZhaoHGuoYLiYZhouMYangLWangZSunYInfluence of strain rate on indentation response of porcine brainJ Mech Behav Biomed Mater201882210217 WeickenmeierJSaezPButlerCYoungPGorielyAKuhlEBulging brainsJ Elast20171291–219721236947861373.74076 Van DommelenJVan der SandeTHrapkoMPetersGMechanical properties of brain tissue by indentation: interregional variationJ Mech Behav Biomed Mater20103158166 JackCRHoltzmanDMBiomarker modeling of Alzheimer’s diseaseNeuron20138013471358 JuckerMWalkerLCSelf-propagation of pathogenic protein aggregates in neurodegenerative diseasesNature20135014551 ZhaoWChoateBJiSMaterial properties of the brain in injury-relevant conditions-experiments and computational modelingJ Mech Behav Biomed Mater201880222234 GefenAGefenNZhuQRaghupathiRMarguliesSSAge-dependent changes in material properties of the brain and braincase of the ratJ Neurotrauma2003201111631177 WeickenmeierJde RooijRBuddaySOvaertTCKuhlEThe mechanical importance of myelination in the central nervous systemJ Mech Behav Biomed Mater201776119124 de RooijRKuhlEConstitutive modeling of brain tissue: current perspectivesAppl Mech Rev2016681010801 MenzelAKuhlEFrontiers in growth and remodelingMech Res Commun201242114 KoliasAGKirkpatrickPJHutchinsonPDecompressive craniectomy: past, present and futureNat Rev Neurol20139405415 BoyceMCParksDMArgonASLarge inelastic deformation of glassy polymers. Part i: rate dependent constitutive modelMech Mater198871533 FengYLeeC-HSunLJiSZhaoXCharacterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modelingJ Mech Behav Biomed Mater201765490501 SarronJ-CBlondeauCGuillaumeAOsmontDIdentification of linear viscoelastic constitutive modelsJ Biomech2000336685693 WeickenmeierJKurtMOzkayaEWintermarkMButts PaulyKKuhlEMagnetic resonance elastography of the brain: a comparison between pigs and humansJ Mech Behav Biomed Mater201877702710 WeickenmeierJButlerCYoungPGorielyAKuhlEThe mechanics of decompressive craniectomy: perssonalized simulationsComput Methods Appl Mech Eng2017314180195 RashidBDestradeMGilchristMDMechanical characterization of brain tissue in tension at dynamic strain ratesJ Mech Behav Biomed Mater2014334354 HolzapfelGANonlinear solid mechanics: a continuum approach for engineering science2000ChichesterWiley0980.74001 MurphyMCHustonJIIIJackCRJrGlaserKJSenjemMLChenJManducaAFelmleeJPEhmanRLMeasuring the characteristic topography of brain stiffness with magnetic resonance elastographyPLoS One2013812e81668 WeickenmeierJde RooijRBuddaySSteinmannPOvaertTKuhlEBrain stiffness increases with myelin contentActa Biomater201642265272 MillerKChinzeiKConstitutive modelling of brain tissue: experiment and theoryJ Biomech1997301111151121 NordahlCWDierkerDMostafaviISchumannCMRiveraSMAmaralDGVan EssenDCCortical folding abnormalities in autism revealed by surface-based morphometryJ Neurosci200727431172511735 RashidBDestradeMGilchristMDMechanical characterization of brain tissue in compression at dynamic strain ratesJ Mech Behav Biomed Mater2012102338 RashidBDestradeMGilchristMDTemperature effects on brain tissue in compressionJ Mech Behav Biomed Mater201214113118 Harris TC, de Rooij R, Kuhl E (2019) The shrinking brain: cerebral atrophy following traumatic brain injury. Ann Biomed Eng. https://doi.org/10.1007/s10439-018-02148-2 AwdryWVThomas the tank engine1946LeicesterEdmund Ward Ltd KaliskeMRothertHFormulation and implementation of three-dimensional viscoelasticity at small and finite strainsComput Mech19971932282390890.73025 MillerKBiomech Brain2011BerlinSpringer MacManusDPierratBMurphyJGGilchristMDynamic mechanical properties of murine brain tissue using micro-indentationJ Biomech2015481232133218 DemirayHA note on the elasticity of soft biological tissuesJ Biomech197253309311 ShreiberDIHaoHEliasRAProbing the influence of myelin and glia on the tensile properties of the spinal cordBiomech Model Mechanobiol200984311321 TamuraAHayashiSWatanabeINagayamaKMatsumotoTMechanical characterization of brain tissue in high-rate compressionJ Biomech Sci Eng200723115126 MillerKConstitutive model of brain tissue suitable for finite element analysis of surgical proceduresJ Biomech1999325531537 RazaviMJZhangTLiuTWangXCortical folding pattern and its consistency induced by biological growthSci Rep201551447710.1038/srep14477 Darvish K, Crandall JR (2001) Strain conditioning in the dynamic viscoelastic response of brain tissue. In: Proceedings of the 2001 bioengineering conference ASME, pp 893–894 MajdanMPlancikovaDBrazinovaARusnakMNieboerDFeiginVMaasAEpidemiology of traumatic brain injuries in europe: a cross-sectional analysisLancet Public Health201612e76e83 GreenMABilstonLESinkusRIn vivo brain viscoelastic properties measured by magnetic resonance elastographyNMR Biomed2008217755764 SchregelKnée TysiakEWGarteiserPGemeinhardtIProzorovskiTAktasOMerzHPetersenDWuerfelJSinkusRDemyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastographyProc Natl Acad Sci U S A20121091766506655 BuddaySSommerGSteinmannPHolzapfelGAKuhlEViscoelastic parameter identification of human brain tissueJ Mech Behav Biomed Mater201774463476 JohnsonCLTelzerEHMagnetic resonance elastography for examining developmental changes in the mechanical properties of the brainDev Cogn Neurosci201733176181 MurphyMCJonesDTJack JrCRGlaserKJSenjemM LManducaAFelmleeJ PCarterR EEhmanR LHuston IIIJRegional brain stiffness changes across the Alzhseimer’s disease spectrumNeuroImage Clin201610283290 BilstonLELiuZPhan-ThienNLarge strain behaviour of brain tissue in shear: some experimental data and differential constitutive modelBiorheology2001384335345 ChatelinSConstantinescoAWillingerRFifty years of brain tissue mechanical testing: from in vitro to in vivo investigationsBiorheology2010475–6255276 BarnesJMPrzybylaLWeaverVMTissue mechanics regulate brain development, homeostasis and diseaseJ Cell Sci201713017182 IwashitaMKataokaNToidaKKosodoYSystematic profiling of spatiotemporal tissue and cellular stiffness in the developing brainDevelopment20141411937933798 ArbogastKBMarguliesSSA fiber-reinforced composite model of the viscoelastic behavior of the brainstem in shearJ Biomech1999328865870 ChristAFFranzeKGautierHMoshayediPFawcettJFranklinRJKaradottirRTGuckJMechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopyJ Biomech2010431529862992 ChengSBilstonLEComputational model of the cerebral ventricles in hydrocephalusJ Biomech Eng20101325054501 WhittallKPMackayALGraebDANugentRALiDKPatyDWIn vivo measurement of t2 distributions and water contents in normal human brainMagn Reson Med19973713443 TepoleABPlochCJWongJGosainAKKuhlEGrowing skin: a computational model for skin expansion in reconstructive surgeryJ Mech Phys Solids201159102177219028678731270.74137 LuY-BFranzeKSeifertGSteinhäuserCKirchhoffFWolburgHGuckJJanmeyPWeiE-QKäsJViscoelastic properties of individual glial cells and neurons in the cnsProc Natl Acad Sci U S A2006103471775917764 KruseSARoseGHGlaserKJManducaAFelmleeJPJackCREhmanRLMagnetic resonance elastography of the brainNeuroimage2008391231237 PapazoglouSHirschSBraunJSackIMultifrequency inversion in magnetic resonance elastographyPhys Med Biol20125782329 KyriacouSKMohamedAMillerKNeffSBrain mechanics for neurosurgery: modeling issuesBiomech Model Mechanobiol200212151164 FletcherTLKoliasAGHutchinsonPJASutcliffeMPFThe wave of advance of advantageous genesPLoS ONE20149e102131 MarkertBA constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continuaTransp Porous Media20077034272372938 FisherRAThe wave of advance of advantageous genesAnn Eugen1937735536963.1111.04 GuertlerCAOkamotoRJSchmidtJLBadachhapeAAJohnsonCLBaylyPVMechanical properties of porcine brain tissue in vivo and ex vivo estimated by mr elastographyJ Biomech2018691018 ChenFZhouJLiYWangYLiLYueHMechanical properties of porcine brain tissue in the coronal plane: interregional variations of the corona radiataAnn Biomed Eng2015431229032910 BuddaySSommerGHaybaeckJSteinmannPHolzapfelGAKuhlERheological characterization of human brain tissueActa Biomater201760315329 ChenXSarntinoranontMBiphasic finite element model of solute transport for direct infusion into nervous tissueAnn Biomed Eng2007351221452158 DonnellyBMedigeJShear properties of human brain tissueJ Biomech Eng19971194423432 GorielyAWeickenmeierJKuhlEStress singularities in swelling soft solidsPhys Rev Lett2016117138001 VelardiFFraternaliFAngelilloMAnisotropic constitutive equations and experimental tensile behavior of brain tissueBiomech Model Mechanobiol2006515361 MorrisonPFLaskeDWBoboHOldfieldEHDedrickRLHigh-flow microinfusion: tissue penetration and pharmacodynamicsAm J Physiol Regul Integr Comp Physiol19942661R292R305 BuddaySSteinmannPKuhlEThe role of mechanics during brain developmentJ Mech Phys Solids201472759232623751328.74061 Garcia-GonzalezDJérusalemAGarzon-HernandezSZaeraRAriasAA continuum mechanics constitutive framework for transverse isotropic soft tissuesJ Mech Phys Solids20181122092243759588 DrapacaCSFritzJSA mechano-electrochemical model of brain neuro-mechanics: application to normal pressure hydrocephalusInt J Numer Anal Mod Ser B20121829328920351274.74076 MariappanYKGlaserKJEhmanRLMagnetic resonance elastography: a reviewClin Anat2010235497511 KansalATorquatoSHarshGChioccaEDeisboeckTSimulated brain tumor growth dynamics using a three-dimensional cellular automatonJ Theor Biol20002034367382 WangFHanYWangBPengQHuangXMillerKWittekAPrediction of brain deformations and risk of traumatic brain injur |
| References_xml | – reference: ClaytonEHGeninGMBaylyPVTransmission, attenuation and reflection of shear waves in the human brainJ R Soc Interface201297628992910 – reference: FisherRAThe wave of advance of advantageous genesAnn Eugen1937735536963.1111.04 – reference: LiuY-LLiG-YHePMaoZ-QCaoYTemperature-dependent elastic properties of brain tissues measured with the shear wave elastography methodJ Mech Behav Biomed Mater201765652656 – reference: DrapacaCSFritzJSA mechano-electrochemical model of brain neuro-mechanics: application to normal pressure hydrocephalusInt J Numer Anal Mod Ser B20121829328920351274.74076 – reference: ShreiberDIHaoHEliasRAProbing the influence of myelin and glia on the tensile properties of the spinal cordBiomech Model Mechanobiol200984311321 – reference: ChatelinSVappouJRothSRaulJ-SWillingerRTowards child versus adult brain mechanical propertiesJ Mech Behav Biomed Mater20126166173 – reference: ThibaultKLMarguliesSSAge-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteriaJ Biomech1998311211191126 – reference: MacManusDBMurphyJGGilchristMDMechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatusJ Mech Behav Biomed Mater201887256266 – reference: ChristAFFranzeKGautierHMoshayediPFawcettJFranklinRJKaradottirRTGuckJMechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopyJ Biomech2010431529862992 – reference: JannesarSAllenMMillsSGibbonsABresnahanJCSalegioEASparreyCJCompressive mechanical characterization of non-human primate spinal cord white matterActa Biomater201874260269 – reference: JohnsonCLTelzerEHMagnetic resonance elastography for examining developmental changes in the mechanical properties of the brainDev Cogn Neurosci201733176181 – reference: RodriguezEKHogerAMcCullochADStress-dependent finite growth in soft elastic tissuesJ Biomech1994274455467 – reference: OgdenRLarge deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solidsProc R Soc A197232615675655840257.73034 – reference: AmbrosiDMollicaFOn the mechanics of a growing tumorInt J Eng Sci200240121297131619141201211.74161 – reference: GefenAGefenNZhuQRaghupathiRMarguliesSSAge-dependent changes in material properties of the brain and braincase of the ratJ Neurotrauma2003201111631177 – reference: LinSHungCComplications of cerebrospinal fluid shunts for hydrocephalus. A review of 204 casesJ Formos Med Assoc1979783258266 – reference: TylerWJThe mechanobiology of brain functionNat Rev Neurosci20121312867 – reference: Dutta-RoyTWittekAMillerKBiomechanical modelling of normal pressure hydrocephalusJ Biomech2008411022632271 – reference: BuddaySAndresSWalterBSteinmannPKuhlEWrinkling instabilities in soft bilayered systemsPhilos Trans A Math Phys Eng Sci2017375111 – reference: de RooijRKuhlEConstitutive modeling of brain tissue: current perspectivesAppl Mech Rev2016681010801 – reference: McIlvainGSchwarbHCohenNJTelzerEHJohnsonCLMechanical properties of the in vivo adolescent human brainDev Cogn Neurosci2018342733 – reference: KarimiANavidbakhshMAn experimental study on the mechanical properties of rat brain tissue using different stress-strain definitionsJ Mater Sci Mater Med201425716231630 – reference: RashidBDestradeMGilchristMDTemperature effects on brain tissue in compressionJ Mech Behav Biomed Mater201214113118 – reference: ChenXSarntinoranontMBiphasic finite element model of solute transport for direct infusion into nervous tissueAnn Biomed Eng2007351221452158 – reference: BuddaySSommerGBirklCLangkammerCHaybaeckJKohnertJBauerMPaulsenFSteinmannPKuhlEHolzapfelGAMechanical characterization of human brain tissueActa Biomater201748319340 – reference: WeberGAnandLFinite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solidsComput Methods Appl Mech Eng19907921732020731.73031 – reference: ChatelinSConstantinescoAWillingerRFifty years of brain tissue mechanical testing: from in vitro to in vivo investigationsBiorheology2010475–6255276 – reference: GorielyAWeickenmeierJKuhlEStress singularities in swelling soft solidsPhys Rev Lett2016117138001 – reference: BuddaySSteinmannPKuhlEPhysical biology of human brain developmentFront Cell Neurosci20159257 – reference: KasterTSackISamaniAMeasurement of the hyperelastic properties of ex vivo brain tissue slicesJ Biomech201144611581163 – reference: BilstonLESoft tissue rheology and its implications for elastography: challenges and opportunitiesNMR Biomed20183110e3832 – reference: KoliasAGKirkpatrickPJHutchinsonPDecompressive craniectomy: past, present and futureNat Rev Neurol20139405415 – reference: Van DommelenJVan der SandeTHrapkoMPetersGMechanical properties of brain tissue by indentation: interregional variationJ Mech Behav Biomed Mater20103158166 – reference: ChengSBilstonLEUnconfined compression of white matterJ Biomech2007401117124 – reference: FengYLeeC-HSunLJiSZhaoXCharacterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modelingJ Mech Behav Biomed Mater201765490501 – reference: MurphyMCJonesDTJack JrCRGlaserKJSenjemM LManducaAFelmleeJ PCarterR EEhmanR LHuston IIIJRegional brain stiffness changes across the Alzhseimer’s disease spectrumNeuroImage Clin201610283290 – reference: Antonovaite N, Beekmans SV, Hol EM, Wadman WJ, Iannuzzi D (2018) Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping. arXiv preprint arXiv:1802.02245 – reference: Darvish K, Crandall JR (2001) Strain conditioning in the dynamic viscoelastic response of brain tissue. In: Proceedings of the 2001 bioengineering conference ASME, pp 893–894 – reference: GreenMABilstonLESinkusRIn vivo brain viscoelastic properties measured by magnetic resonance elastographyNMR Biomed2008217755764 – reference: WrightRMPostAHoshizakiBRameshKTA multiscale computational approach to estimating axonal damage under inertial loading of the headJ Neurotrauma2013302102118 – reference: NingXZhuQLanirYMarguliesSSA transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformationJ Biomech Eng20061286925933 – reference: WeickenmeierJJuckerMKuhlEGorielyAA physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosisJ Mech Phys Solids2019124264281 – reference: PrangeMTMarguliesSSRegional, directional, and age-dependent properties of the brain undergoing large deformationJ Biomech Eng20021242244252 – reference: SimoJAlgorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theoryComput Methods Appl Mech Eng19929916111211828730764.73089 – reference: FranceschiniGBigoniDRegitnigPHolzapfelGABrain tissue deforms similarly to filled elastomers and follows consolidation theoryJ Mech Phys Solids20065412259226201162.74303 – reference: HarrisonPThe neuropathology of schizophrenia: a critical review of the data and their interpretationBrain19991122593624 – reference: VelardiFFraternaliFAngelilloMAnisotropic constitutive equations and experimental tensile behavior of brain tissueBiomech Model Mechanobiol2006515361 – reference: MurphyMCHustonJIIIJackCRJrGlaserKJSenjemMLChenJManducaAFelmleeJPEhmanRLMeasuring the characteristic topography of brain stiffness with magnetic resonance elastographyPLoS One2013812e81668 – reference: PapazoglouSHirschSBraunJSackIMultifrequency inversion in magnetic resonance elastographyPhys Med Biol20125782329 – reference: Samadi-DookiAVoyiadjisGZStoutRWA combined experimental, modeling, and computational approach to interpret the viscoelastic response of the white matter brain tissue during indentationJ Mech Behav Biomed Mater2018772433 – reference: WhittallKPMackayALGraebDANugentRALiDKPatyDWIn vivo measurement of t2 distributions and water contents in normal human brainMagn Reson Med19973713443 – reference: FinanJDElkinBSPearsonEMKalbianILMorrisonBIIIViscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and ageAnn Biomed Eng20124017078 – reference: BuddaySNayRde RooijRSteinmannPWyrobekTOvaertTCKuhlEMechanical properties of gray and white matter brain tissue by indentationJ Mech Behav Biomed Mater201546318330 – reference: MariappanYKGlaserKJEhmanRLMagnetic resonance elastography: a reviewClin Anat2010235497511 – reference: NicolleSLounisMWillingerRShear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental resultsStapp Car Crash J200448239258 – reference: PrevostTPBalakrishnanASureshSSocrateSBiomechanics of brain tissueActa Biomater201178395 – reference: MeaneyDFMorrisonBBassCDThe mechanics of traumaic brain injury: a review of what we know and what we need to know for reducing its societal burdenJ Biomech Eng20141362021008 – reference: MillerKConstitutive model of brain tissue suitable for finite element analysis of surgical proceduresJ Biomech1999325531537 – reference: KuhlEMaasRHimpelGMenzelAComputational modeling of arterial wall growth. Attempts towards patient-specific simulations based on computer tomographyBiomech Model Mechanobiol200765321331 – reference: SidoroffFNonlinear viscoelastic model with intermediate configurationJ Mec1974134679713373429 – reference: GiordanoCKleivenSConnecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissueJ R Soc Interface2014119120130914 – reference: SarronJ-CBlondeauCGuillaumeAOsmontDIdentification of linear viscoelastic constitutive modelsJ Biomech2000336685693 – reference: AmbrosiDAteshianGArrudaECowinSDumaisJGorielyAHolzapfelGAHumphreyJKemkemerRKuhlEPerspectives on biological growth and remodelingJ Mech Phys Solids201159486388328095851270.74134 – reference: RichmanDPStewartRMHutchinsonJCavincssVSJrMechanical mode of brain convolutional deve lopmentScience19751891821 – reference: VappouJBretonEChoquetPWillingerRConstantinescoAAssessment of in vivo and post-mortem mechanical behavior of brain tissue using magnetic resonance elastographyJ Biomech2008411429542959 – reference: BarnesJMPrzybylaLWeaverVMTissue mechanics regulate brain development, homeostasis and diseaseJ Cell Sci201713017182 – reference: GovindjeeSReeseSA presentation and comparison of two large deformation viscoelastic modelsJ Eng Mater Technol19971195251255 – reference: WeickenmeierJde RooijRBuddaySSteinmannPOvaertTKuhlEBrain stiffness increases with myelin contentActa Biomater201642265272 – reference: BuddaySSommerGHaybaeckJSteinmannPHolzapfelGAKuhlERheological characterization of human brain tissueActa Biomater201760315329 – reference: VoyiadjisGZSamadi-DookiAHyperelastic modeling of the human brain tissue: effects of no-slip boundary condition and compressibility on the uniaxial deformationJ Mech Behav Biomed Mater2018836378 – reference: MillerKBiomech Brain2011BerlinSpringer – reference: BockASOlavarriaJFLeiglandLATaberENJespersenSNKroenkeCDDiffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: an experimental model in the ferretFront Syst Neurosci20104149 – reference: GuertlerCAOkamotoRJSchmidtJLBadachhapeAAJohnsonCLBaylyPVMechanical properties of porcine brain tissue in vivo and ex vivo estimated by mr elastographyJ Biomech2018691018 – reference: KansalATorquatoSHarshGChioccaEDeisboeckTSimulated brain tumor growth dynamics using a three-dimensional cellular automatonJ Theor Biol20002034367382 – reference: PervinFChenWWDynamic mechanical response of bovine gray matter and white matter brain tissues under compressionJ Biomech2009426731735 – reference: QianLZhaoHGuoYLiYZhouMYangLWangZSunYInfluence of strain rate on indentation response of porcine brainJ Mech Behav Biomed Mater201882210217 – reference: Comellas E, Steinmann P (2017) A non-linear poroelastic constitutive model for the computational modelling of brain tissue behaviour. In: XIV international conference on computational plasticity – reference: ReeseSGovindjeeSA theory of finite viscoelasticity and numerical aspectsInt J Solids Struct19983526–27345534820918.73028 – reference: BuddaySSteinmannPKuhlESecondary instabilities modulate cortical complexity in the mammalian brainPhilos Mag20159528–3032443256 – reference: GalfordJEMcElhaneyJHA viscoelastic study of scalp, brain, and duraJ Biomech197032211221 – reference: JinXZhuFMaoHShenMYangKHA comprehensive experimental study on material properties of human brain tissueJ Biomech2013461627952801 – reference: StøverudKHDarcisMHelmigRHassanizadehSMModeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissueTransp Porous Media20129211191432900644 – reference: LuY-BFranzeKSeifertGSteinhäuserCKirchhoffFWolburgHGuckJJanmeyPWeiE-QKäsJViscoelastic properties of individual glial cells and neurons in the cnsProc Natl Acad Sci U S A2006103471775917764 – reference: ChengSBilstonLEComputational model of the cerebral ventricles in hydrocephalusJ Biomech Eng20101325054501 – reference: Welker W, Johnson IJ, Noe A (2014) Comparative mammalian brain collections. http://brainmuseum.org. Accessed 11 Oct 2014 – reference: ZhaoWChoateBJiSMaterial properties of the brain in injury-relevant conditions-experiments and computational modelingJ Mech Behav Biomed Mater201880222234 – reference: McCrackenPJManducaAFelmleeJEhmanRLMechanical transient-based magnetic resonance elastographyMagn Reson Med2005533628639 – reference: WeickenmeierJSaezPButlerCYoungPGorielyAKuhlEBulging brainsJ Elast20171291–219721236947861373.74076 – reference: BoyceMCParksDMArgonASLarge inelastic deformation of glassy polymers. Part i: rate dependent constitutive modelMech Mater198871533 – reference: ArbogastKBMarguliesSSA fiber-reinforced composite model of the viscoelastic behavior of the brainstem in shearJ Biomech1999328865870 – reference: StreitbergerK-JSackIKreftingDPfüllerCBraunJPaulFWuerfelJBrain viscoelasticity alteration in chronic-progressive multiple sclerosisPloS One201271e29888 – reference: MaikosJTQianZMetaxasDShreiberDIFinite element analysis of spinal cord injury in the ratJ Neurotrauma2008257795816 – reference: JérusalemADaoMContinuum modeling of a neuronal cell under blast loadingActa Biomater20128933603371 – reference: BuddaySSommerGPaulsenFHolzapfelGSteinmannPKuhlERegion- and loading-specific finite viscoelasticity of human brain tissueProc Appl Math Mech20181812 – reference: BainACMeaneyDFTissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injuryJ Biomech Eng20001226615622 – reference: HardyWNFosterCDMasonMJYangKHKingAITashmanSInvestigation of head injury mechanisms using neutral density technology and high-speed biplanar x-rayStapp Car Crash J200145337368 – reference: DennerllTJLamoureuxPBuxbaumREHeidemannSRThe cytomechanics of axonal elongation and retractionJ Cell Biol1989109630733083 – reference: VernerSGarikipatiKAmyloid β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort studyLancet Neurol201312357367 – reference: TullyBVentikosYCerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalusJ Fluid Mech201166718821527544901225.76317 – reference: EhlersWWagnerAMulti-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problemComput Methods Biomech Biomed Eng2015188861879 – reference: ChenFZhouJLiYWangYLiLYueHMechanical properties of porcine brain tissue in the coronal plane: interregional variations of the corona radiataAnn Biomed Eng2015431229032910 – reference: AmarMBGorielyAGrowth and instability in elastic tissuesJ Mech Phys Solids200553102284231921676361120.74336 – reference: MorrisonPFLaskeDWBoboHOldfieldEHDedrickRLHigh-flow microinfusion: tissue penetration and pharmacodynamicsAm J Physiol Regul Integr Comp Physiol19942661R292R305 – reference: FallensteinGHulceVDMelvinJWDynamic mechanical properties of human brain tissueJ Biomech196923217226 – reference: SchregelKnée TysiakEWGarteiserPGemeinhardtIProzorovskiTAktasOMerzHPetersenDWuerfelJSinkusRDemyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastographyProc Natl Acad Sci U S A20121091766506655 – reference: Harris TC, de Rooij R, Kuhl E (2019) The shrinking brain: cerebral atrophy following traumatic brain injury. Ann Biomed Eng. https://doi.org/10.1007/s10439-018-02148-2 – reference: GefenAMarguliesSSAre in vivo and in situ brain tissues mechanically similar?J Biomech20043713391352 – reference: GorielyABuddaySKuhlEChapter two-neuromechanics: from neurons to brainAdv Appl Mech20154879139 – reference: NordahlCWDierkerDMostafaviISchumannCMRiveraSMAmaralDGVan EssenDCCortical folding abnormalities in autism revealed by surface-based morphometryJ Neurosci200727431172511735 – reference: JackCRHoltzmanDMBiomarker modeling of Alzheimer’s diseaseNeuron20138013471358 – reference: ShuckLAdvaniSRheological response of human brain tissue in shearJ Basic Eng1972944905911 – reference: KyriacouSKMohamedAMillerKNeffSBrain mechanics for neurosurgery: modeling issuesBiomech Model Mechanobiol200212151164 – reference: GentAA new constitutive relation for rubberRubber Chem Technol199669159611396825 – reference: KaczmarekMSubramaniamRPNeffSRThe hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometryBull Math Biol19975922953230904.92026 – reference: WeickenmeierJde RooijRBuddaySOvaertTCKuhlEThe mechanical importance of myelination in the central nervous systemJ Mech Behav Biomed Mater201776119124 – reference: FletcherTLKoliasAGHutchinsonPJASutcliffeMPFThe wave of advance of advantageous genesPLoS ONE20149e102131 – reference: MillerKChinzeiKConstitutive modelling of brain tissue: experiment and theoryJ Biomech1997301111151121 – reference: NieXSanbornBWeerasooriyaTChenWHigh-rate bulk and shear responses of bovine brain tissueInt J Impact Eng2013535661 – reference: WeickenmeierJButlerCYoungPGorielyAKuhlEThe mechanics of decompressive craniectomy: perssonalized simulationsComput Methods Appl Mech Eng2017314180195 – reference: BlumenthalNRHermansonOHeimrichBShastriVPStochastic nanoroughness modulates neuron-astrocyte interactions and function via mechanosensing cation channelsProc Natl Acad Sci U S A2014111451612416129 – reference: WeickenmeierJKuhlEGorielyAMultiphysics of prion-like diseases: progression and atrophyPhys Rev Lett2018121158101 – reference: LinningerAASweetmanBPennRNormal and hydrocephalic brain dynamics: the role of reduced cerebrospinal fluid reabsorption in ventricular enlargementAnn Biomed Eng200937714341447 – reference: HakimSAdamsRThe special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure: Observations on cerebrospinal fluid hydrodynamicsJ Neurol Sci196524307327 – reference: MajdanMPlancikovaDBrazinovaARusnakMNieboerDFeiginVMaasAEpidemiology of traumatic brain injuries in europe: a cross-sectional analysisLancet Public Health201612e76e83 – reference: RazaviMJZhangTLiuTWangXCortical folding pattern and its consistency induced by biological growthSci Rep201551447710.1038/srep14477 – reference: ForteAEGentlemanSMDiniDOn the characterization of the heterogeneous mechanical response of human brain tissueBiomech Model Mechanobiol201616907920 – reference: WeickenmeierJKurtMOzkayaEWintermarkMButts PaulyKKuhlEMagnetic resonance elastography of the brain: a comparison between pigs and humansJ Mech Behav Biomed Mater201877702710 – reference: BuddaySRaybaudCKuhlEA mechanical model predicts morphological abnormalities in the developing human brainSci Rep20144564410.1038/srep05644 – reference: BuddaySSteinmannPKuhlEThe role of mechanics during brain developmentJ Mech Phys Solids201472759232623751328.74061 – reference: TepoleABPlochCJWongJGosainAKKuhlEGrowing skin: a computational model for skin expansion in reconstructive surgeryJ Mech Phys Solids201159102177219028678731270.74137 – reference: TamuraAHayashiSWatanabeINagayamaKMatsumotoTMechanical characterization of brain tissue in high-rate compressionJ Biomech Sci Eng200723115126 – reference: ClootsRVan DommelenJNybergTKleivenSGeersMMicromechanics of diffuse axonal injury: influence of axonal orientation and anisotropyBiomech Model Mechanobiol2011103413422 – reference: WangXStudholmeCGrigsbyPLFriasAECarlsonVCCKroenkeCDFolding, but not surface area expansion, is associated with cellular morphological maturation in the fetal cerebral cortexJ Neurosci201737819711983 – reference: ClootsRJVan DommelenJKleivenSGeersMMulti-scale mechanics of traumatic brain injury: predicting axonal strains from head loadsBiomech Model Mechanobiol2013121137150 – reference: KruseSARoseGHGlaserKJManducaAFelmleeJPJackCREhmanRLMagnetic resonance elastography of the brainNeuroimage2008391231237 – reference: MacManusDPierratBMurphyJGGilchristMDynamic mechanical properties of murine brain tissue using micro-indentationJ Biomech2015481232133218 – reference: MillerKChinzeiKMechanical properties of brain tissue in tensionJ Biomech2002354483490 – reference: TallinenTChungJYRousseauFGirardNLefèvreJMahadevanLOn the growth and form of cortical convolutionsNat Phys2016126588593 – reference: WuerfelJPaulFBeierbachBHamhaberUKlattDPapazoglouSZippFMartusPBraunJSackIMr-elastography reveals degradation of tissue integrity in multiple sclerosisNeuroimage201049325202525 – reference: Koser DE, Moeendarbary E, Kuerten S, Franze K (2018) Predicting local tissue mechanics using immunohistochemistry, p 358119. bioRxiv – reference: MarkertBA constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continuaTransp Porous Media20077034272372938 – reference: WeickenmeierJKurtMOzkayaEde RooijROvaertTEhmanRButts PaulyKKuhlEBrain stiffens post mortemJ Mech Behav Biomed Master2018848898 – reference: ElkinBSIlankovanAMorrisonBAge-dependent regional mechanical properties of the rat hippocampus and cortexJ Biomech Eng20101321011010 – reference: KoserDEThompsonAJFosterSKDwivedyAPillaiEKSheridanGKSvobodaHVianaMda F CostaLGuckJMechanosensing is critical for axon growth in the developing brainNat Neurosci201619121592 – reference: NagashimaTTamakiNMatsumotoSHorwitzBSeguchiYBiomechanics of hydrocephalus: a new theoretical modelNeurosurgery1987216898904 – reference: Alzheimer’s Disease International (2016) Improving healthcare for people living with dementia. Coverage, quality and costs now and in the future. World Alzheimer Report – reference: HiscoxLVJohnsonCLMcGarryMDPerrinsMLittlejohnAvan BeekEJRobertsNStarrJMHigh-resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adultsNeurobiol Aging201865158167 – reference: LabusKMPuttlitzCMViscoelasticity of brain corpus callosum in biaxial tensionJ Mech Phys Solids201696591604 – reference: GaroAHrapkoMVan DommelenJPetersGTowards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparationBiorheology20074415158 – reference: BlümckeIVintersHVArmstrongDAronicaEThomMSpreaficoRMalformations of cortical development and epilepsiesEpileptics Disord2009113181193 – reference: BoboRHLaskeDWAkbasakAMorrisonPFDedrickRLOldfieldEHConvection-enhanced delivery of macromolecules in the brainProc Natl Acad Sci U S A199491620762080 – reference: HrapkoMVan DommelenJPetersGWismansJThe mechanical behaviour of brain tissue: large strain response and constitutive modellingBiorheology2006435623636 – reference: ZhangWLiuL-FXiongY-JLiuY-FYuS-BWuC-WGuoWEffect of in vitro storage duration on measured mechanical properties of brain tissueSci Rep2018811247 – reference: HolzapfelGANonlinear solid mechanics: a continuum approach for engineering science2000ChichesterWiley0980.74001 – reference: LiuY-LLiuDXuLSuCLiG-YQianL-XCaoYIn vivo and ex vivo elastic properties of brain tissues measured with ultrasound elastographyJ Mech Behav Biomed Mater201883120125 – reference: ShulyakovAVCenkowskiSSBuistRJDel BigioMRAge-dependence of intracranial viscoelastic properties in living ratsJ Mech Behav Biomed Mater201143484497 – reference: BuddaySSommerGSteinmannPHolzapfelGAKuhlEViscoelastic parameter identification of human brain tissueJ Mech Behav Biomed Mater201774463476 – reference: DonnellyBMedigeJShear properties of human brain tissueJ Biomech Eng19971194423432 – reference: KoserDEMoeendarbaryEHanneJKuertenSFranzeKCNS cell distribution and axon orientation determine local spinal cord mechanical propertiesBiophys J2015108921372147 – reference: KaliskeMRothertHFormulation and implementation of three-dimensional viscoelasticity at small and finite strainsComput Mech19971932282390890.73025 – reference: SackIStreitbergerK-JKreftingDPaulFBraunJThe influence of physiological aging and atrophy on brain viscoelastic properties in humansPloS one201169e23451 – reference: Garcia-GonzalezDJérusalemAGarzon-HernandezSZaeraRAriasAA continuum mechanics constitutive framework for transverse isotropic soft tissuesJ Mech Phys Solids20181122092243759588 – reference: GorielyAGeersMGHolzapfelGAJayamohanJJérusalemASivaloganathanSSquierWvan DommelenJAWatersSKuhlEMechanics of the brain: perspectives, challenges, and opportunitiesBiomech Model Mechanobiol2015145931965 – reference: MacManusDBPierratBMurphyJGGilchristMDRegion and species dependent mechanical properties of adolescent and young adult brain tissueSci Rep20177113729 – reference: RashidBDestradeMGilchristMDMechanical characterization of brain tissue in simple shear at dynamic strain ratesJ Mech Behav Biomed Mater2013287185 – reference: WangFHanYWangBPengQHuangXMillerKWittekAPrediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive modelBiomech Model Mechanobiol201817411651185 – reference: HolzapfelGASimoJCA viscoelastic constitutive model for continuous media at finite thermomechanical changesInt J Solids Struct199633301930340909.73038 – reference: LiXvon HolstHKleivenSInfluence of gravity for optimal head positions in the treatment of head injury patientsActa Neurochir20111531020572064 – reference: DemirayHA note on the elasticity of soft biological tissuesJ Biomech197253309311 – reference: MenzelAKuhlEFrontiers in growth and remodelingMech Res Commun201242114 – reference: BilstonLENeural tissue biomechanics2011HeidelbergSpringer – reference: RashidBDestradeMGilchristMDMechanical characterization of brain tissue in compression at dynamic strain ratesJ Mech Behav Biomed Mater2012102338 – reference: FengYOkamotoRJNamaniRGeninGMBaylyPVMeasurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matterJ Mech Behav Biomed Mater201323117132 – reference: IwashitaMKataokaNToidaKKosodoYSystematic profiling of spatiotemporal tissue and cellular stiffness in the developing brainDevelopment20141411937933798 – reference: BaylyPVClaytonEHGeninGMQuantitative imaging methods for the development and validation of brain biomechanics modelsAnnu Rev Biomed Eng201214369396 – reference: EhlersWEipperGFinite elastic deformations in liquid-saturated and empty porous solidsTransp Porous Media19993411791911791216 – reference: GerischerLMFehlnerAKöbeTPrehnKAntonenkoDGrittnerUBraunJSackIFlöelACombining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of alzheimer’s disease based on magnetic resonance imagingNeuroImage Clin201818485493 – reference: AwdryWVThomas the tank engine1946LeicesterEdmund Ward Ltd – reference: Estes M, MacElhaney JH (1970) Response of brain tissue to compressive loading. In: American society of mechanical engineers biomechanical and human factors conference – reference: PogodaKChinLGeorgesPCByfieldFJBuckiRKimRWeaverMWellsRGMarcinkiewiczCJanmeyPACompression stiffening of brain and its effect on mechanosensing by glioma cellsNew J Phys2014167075002 – reference: BilstonLELiuZPhan-ThienNLarge strain behaviour of brain tissue in shear: some experimental data and differential constitutive modelBiorheology2001384335345 – reference: JuckerMWalkerLCSelf-propagation of pathogenic protein aggregates in neurodegenerative diseasesNature20135014551 – reference: RashidBDestradeMGilchristMDMechanical characterization of brain tissue in tension at dynamic strain ratesJ Mech Behav Biomed Mater2014334354 – reference: SackIBeierbachBWuerfelJKlattDHamhaberUPapazoglouSMartusPBraunJThe impact of aging and gender on brain viscoelasticityNeuroimage2009463652657 |
| SSID | ssj0054992 |
| Score | 2.6518283 |
| Snippet | Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing... Brain tissue is not only one of the most important but also the most complex and compliant tissue in the human body. While long underestimated, increasing... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 1187 |
| SubjectTerms | Brain Computer simulation Constitutive models Continuum mechanics Diagnostic software Diagnostic systems Engineering Head injuries Mathematical and Computational Engineering Mathematical models Mechanical tests Nonlinear equations Numerical prediction Original Paper Performance prediction Shades Simulation Tissues |
| Title | Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue |
| URI | https://link.springer.com/article/10.1007/s11831-019-09352-w https://www.proquest.com/docview/2436158807 |
| Volume | 27 |
| WOSCitedRecordID | wos000565732400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 1886-1784 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054992 issn: 1134-3060 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRKMgDI5YaO4lttoKoWKgQLVW3yI5t6JKiJlDx77HThAJigS1SnrqH_V3uvjuAc85kylhgsAppF3suI5aEaxwpQozq2lCo5bAJNhjwyUTcV6SwvK52r1OS5Uq9Irs56_Ohry_xcbABL9Zhw2133Lvjw3Bcr78-4ClznAH1__zjbkWV-f0Z34Dlj1xoucX0m__7uF3YqSAl6i1tYA_WTNaCZgUvUeW8eQu2v_Qe3Idxf2qLdzR8ltrkaGbRlR8WcYl6aJkuQLMMOXCI7oznBntVopHvyJE9IZlp5GeoeSb7551oVKrwAB77N6PrW1wNWcAvhAUFVrHWkeWxISqNhAutpbS-Z1oUW-GiMSm4pSYNFEuJZSYU3B1QB1osoS70tIIeQiObZeYIkEM2jDvdWm2jUGolu1zHghlu3CsUDdrQqWWdVJ6SJySkDlS5VYS14aKW7er0qquyF3DiBJyUAk4Wx3-7_AS2iA-Vy_KwDjSK-as5hc30rZjm87PSgj4A1dnBKg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RNFEPoqgRRe3Bo0u2dls7b2gkGIEYmYTb0m6tchmGTYn_ve3YRI0XvS3ZZ957ff399r4AzhnlMaWOtIRLbMvUMlocs8TyBMZS2MoNxGLYBB0M2Hgc3JdFYVmV7V6FJAtPvSx209ZnqK9J8dGwwZqvwpqrdyyTyPcwHFX-1xCeIsbpEPPP37fLUpnfn_ENWP6IhRZbTKf-v4_bge0SUqL2wgZ2YUWmDaiX8BKVizdrwNaX3oN7MOpMVP6Ohs88kRmaKnRlhkVcojZahAvQNEUaHKK-NLXBRpUoNB050ifE0wSZGWqmkv3zThQWKtyHx85NeN21yiEL1gumTm4JP0k8xXyJRewFmlpzrkzPNM9XgWZjPGCKyNgRNMaKSjdg-oBo0KIw0dRTBeQAauk0lYeANLKhTOtWJcpzeSK4zRI_oJJJ_QpBnCa0KllH5UrJIuwSDaq0F6FNuKhkuzy97KpsBBxpAUeFgKP50d8uP4ONbtjvRb3bwd0xbGJDm4tUsRbU8tmrPIH1-C2fZLPTwpo-AO6ZxA4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oGqMHUdSIovbg0Y1s99GuN3wQjUpIQOJt025b5bIQWCX-ezvLImi8GG-b7DMzbff7OvPNAJxyJhLGXO1I36s7qGV0BOXKCSSlWtaNH8lpswnWavHn56i9oOLPs91nIcmppgGrNKXZ-VCZ87nwzY5EpMGY7mMhhDNZhhUfmwYhX-_0Zmsxkp883ul6uP8f1gvZzO_P-AYyf8RF899Ns_z_D92CzQJqksZ0bGzDkk4rUC5gJykm9bgCGws1CXeg1-yb7IN0XoXSYzIw5BKbSFyQBpmGEcggJRY0kkeNmmF0MelipY70hYhUEeythgr3rztJN3ftLjw1b7pXt07RfMEZUuZmjgyVCgwPNZVJEFnKLYTBWmpBaCLL0kTEjacTV7KEGqb9iNsDz4IZQz1LSU3k7UEpHaR6H4hFPIxbnxtlAl8oKepchRHTXNtXSM-tQm1m97iYQeOY-p4FW3Z1YVU4m9l5fnpebRkNHFsDx7mB48nB3y4_gbX2dTN-uGvdH8I6RTadZ5DVoJSN3vQRrCbvWX88Os4H1idH08zy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fifty+Shades+of+Brain%3A+A+Review+on+the+Mechanical+Testing+and+Modeling+of+Brain+Tissue&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Budday+Silvia&rft.au=Ovaert%2C+Timothy+C&rft.au=Holzapfel%2C+Gerhard+A&rft.au=Steinmann%2C+Paul&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=27&rft.issue=4&rft.spage=1187&rft.epage=1230&rft_id=info:doi/10.1007%2Fs11831-019-09352-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon |