Stability and Hopf bifurcation of a predator-prey model with Smith growth rate and Monod–Haldane functional response
This paper focuses on the qualitative analysis of the diffusive Monod–Haldane predator-prey model with Smith growth rate under Neumann boundary condition. First, the stability of the solution of corresponding ODE system is studied, and then the Hopf divergence direction and the stability of periodic...
Uložené v:
| Vydané v: | Advances in continuous and discrete models Ročník 2025; číslo 1; s. 46 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.12.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1687-1839, 2731-4235, 1687-1847 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper focuses on the qualitative analysis of the diffusive Monod–Haldane predator-prey model with Smith growth rate under Neumann boundary condition. First, the stability of the solution of corresponding ODE system is studied, and then the Hopf divergence direction and the stability of periodic solutions are given. Then considering the non-uniform distribution of populations in nature, by standard linear operator theory and center manifold theorem, the Turing instability and the Hopf bifurcation of the PDE system with diffusion effects is analyzed. Finally, the theoretical calculation results are verified by numerical simulations. It can be observed that the variation of Smith growth rate and diffusion coefficient within a certain range can increase the complexity of the model. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1839 2731-4235 1687-1847 |
| DOI: | 10.1186/s13662-025-03912-0 |