Stability and Hopf bifurcation of a predator-prey model with Smith growth rate and Monod–Haldane functional response

This paper focuses on the qualitative analysis of the diffusive Monod–Haldane predator-prey model with Smith growth rate under Neumann boundary condition. First, the stability of the solution of corresponding ODE system is studied, and then the Hopf divergence direction and the stability of periodic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in continuous and discrete models Ročník 2025; číslo 1; s. 46
Hlavní autori: Feng, Xiaozhou, Li, Kunyu, Liu, Mengyan, Wang, Lin, Wang, Tonghui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Predmet:
ISSN:1687-1839, 2731-4235, 1687-1847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper focuses on the qualitative analysis of the diffusive Monod–Haldane predator-prey model with Smith growth rate under Neumann boundary condition. First, the stability of the solution of corresponding ODE system is studied, and then the Hopf divergence direction and the stability of periodic solutions are given. Then considering the non-uniform distribution of populations in nature, by standard linear operator theory and center manifold theorem, the Turing instability and the Hopf bifurcation of the PDE system with diffusion effects is analyzed. Finally, the theoretical calculation results are verified by numerical simulations. It can be observed that the variation of Smith growth rate and diffusion coefficient within a certain range can increase the complexity of the model.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1839
2731-4235
1687-1847
DOI:10.1186/s13662-025-03912-0