Stability and Hopf bifurcation of a predator-prey model with Smith growth rate and Monod–Haldane functional response

This paper focuses on the qualitative analysis of the diffusive Monod–Haldane predator-prey model with Smith growth rate under Neumann boundary condition. First, the stability of the solution of corresponding ODE system is studied, and then the Hopf divergence direction and the stability of periodic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in continuous and discrete models Ročník 2025; číslo 1; s. 46
Hlavní autori: Feng, Xiaozhou, Li, Kunyu, Liu, Mengyan, Wang, Lin, Wang, Tonghui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Predmet:
ISSN:1687-1839, 2731-4235, 1687-1847
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper focuses on the qualitative analysis of the diffusive Monod–Haldane predator-prey model with Smith growth rate under Neumann boundary condition. First, the stability of the solution of corresponding ODE system is studied, and then the Hopf divergence direction and the stability of periodic solutions are given. Then considering the non-uniform distribution of populations in nature, by standard linear operator theory and center manifold theorem, the Turing instability and the Hopf bifurcation of the PDE system with diffusion effects is analyzed. Finally, the theoretical calculation results are verified by numerical simulations. It can be observed that the variation of Smith growth rate and diffusion coefficient within a certain range can increase the complexity of the model.
AbstractList This paper focuses on the qualitative analysis of the diffusive Monod–Haldane predator-prey model with Smith growth rate under Neumann boundary condition. First, the stability of the solution of corresponding ODE system is studied, and then the Hopf divergence direction and the stability of periodic solutions are given. Then considering the non-uniform distribution of populations in nature, by standard linear operator theory and center manifold theorem, the Turing instability and the Hopf bifurcation of the PDE system with diffusion effects is analyzed. Finally, the theoretical calculation results are verified by numerical simulations. It can be observed that the variation of Smith growth rate and diffusion coefficient within a certain range can increase the complexity of the model.
Author Feng, Xiaozhou
Liu, Mengyan
Wang, Lin
Wang, Tonghui
Li, Kunyu
Author_xml – sequence: 1
  givenname: Xiaozhou
  orcidid: 0000-0001-9349-1432
  surname: Feng
  fullname: Feng, Xiaozhou
  email: flxzfxz8@163.com
  organization: School of Science, Xi’an Technological University
– sequence: 2
  givenname: Kunyu
  surname: Li
  fullname: Li, Kunyu
  organization: School of Science, Xi’an Technological University
– sequence: 3
  givenname: Mengyan
  surname: Liu
  fullname: Liu, Mengyan
  organization: School of Electronic Information, Xi’an Technological University
– sequence: 4
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  organization: School of Science, Xi’an Technological University
– sequence: 5
  givenname: Tonghui
  surname: Wang
  fullname: Wang, Tonghui
  organization: Department of Mathematical Sciences, New Mexico State University
BookMark eNpFkL1OwzAAhC0EEqX0BZgsMRv8k8T2iCqgSEUMhTlyYrukSu1gO1TdeAfekCchaZFY7m44nU7fBTh13hkArgi-IUQUt5GwoqAI0xxhJsmQTsCEckZQRll-CiakEBwRweQ5mMW4wRhTSRnHYgI-V0lVTdukPVROw4XvLKwa24dapcY76C1UsAtGq-QDGsIebr02Ldw16R2utqOug98NFlQyh5Fn77z--fpeqFYrZ6DtXT2OqRYGEzvvorkEZ1a10cz-fAreHu5f5wu0fHl8mt8tUUc5SUgyXfFKYqUp06aqKbd5LTkplOG2xoSJitCMV5pzgYVQVhihLaMyMzQjmLMpuD7udsF_9CamcuP7MDyJJSNFnotcyLHFjq3YhcatTfhvEVyOjMsj43JgXB4YD_oL9OlzLg
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1186/s13662-025-03912-0
DatabaseName Springer Nature OA Free Journals
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Engineering
EISSN 2731-4235
1687-1847
ExternalDocumentID 10_1186_s13662_025_03912_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No.12326417
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Basic Research Program of Shaanxi Province
  grantid: No.2023ybgy016, 2023wgzjzd08, 2024jcybms072
  funderid: http://dx.doi.org/10.13039/501100017596
– fundername: High-end Foreign Experts Recruitment Plan of China
  grantid: No.G2023041033L
  funderid: http://dx.doi.org/10.13039/501100018608
GroupedDBID 0R~
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ACACY
ACULB
AFGXO
ALMA_UNASSIGNED_HOLDINGS
C24
C6C
EBLON
EBS
ESX
SOJ
TUS
~8M
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
8R4
8R5
AAFWJ
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
DWQXO
FR3
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
JQ2
K6V
K7-
KQ8
KR7
L6V
L7M
L~C
L~D
M0N
M7S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PUEGO
Q2X
Q9U
REM
RHU
RNS
SMT
U2A
UPT
ID FETCH-LOGICAL-p271t-93db7b90ad23debc27f5c9716ae7fc0138b1247bd778088af8e8df3294e241073
IEDL.DBID K7-
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418208600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1839
IngestDate Tue Sep 30 18:40:02 EDT 2025
Thu Apr 24 03:40:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hopf analysis
Neumann boundary condition
Smith growth rate
Turing instability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p271t-93db7b90ad23debc27f5c9716ae7fc0138b1247bd778088af8e8df3294e241073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9349-1432
OpenAccessLink https://www.proquest.com/docview/3165585897?pq-origsite=%requestingapplication%
PQID 3165585897
PQPubID 237355
ParticipantIDs proquest_journals_3165585897
springer_journals_10_1186_s13662_025_03912_0
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationSubtitle Theory and Modern Applications
PublicationTitle Advances in continuous and discrete models
PublicationTitleAbbrev Adv Cont Discr Mod
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
SSID ssj0002923708
ssj0029488
Score 2.377255
Snippet This paper focuses on the qualitative analysis of the diffusive Monod–Haldane predator-prey model with Smith growth rate under Neumann boundary condition....
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 46
SubjectTerms Analysis
Biomathematical Modelling and Stochastic Analysis
Boundary conditions
Centre manifold theory
Difference and Functional Equations
Diffusion coefficient
Diffusion rate
Divergence
Equilibrium
Functional Analysis
Growth models
Hopf bifurcation
Linear operators
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Predation
Predator-prey simulation
Predators
Qualitative analysis
Stability analysis
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46PejB7-F0Sg4eDbZpl6RHGY5dHB4UditJk8hA2tFug938D_5Df4lv0lZRvOipgX5Q3iRPnvcboSsuuYoAG4k2GhQUIyVJFMuICbSRwsIJprVvNsEnEzGdJg9NUljVRru3LkmP1H5bC3ZThRFjlLj2q66qOYw20dYgFIlb18Mmx8HhLwXOwgPRZsj8-uo3PvnDBepPltH-__7pAO01TBLf1lN_iDZMfoR27z_LsFbHaAVU0ge_rrHMNR4Xc4vVzC7L2k6HC4slnpdGO82bwGCNfWcc7Kyz2Btd8DPo6XBxFSX8RwAECv3--jaWL1rmBruDsbYn4rKOtzUn6Gl09zgck6bRAplTHi5I4oosqySQmkbaqIxyO8hcbSlpuM2cL1MBDeBKcy4AlaQVRmgb0SQ2QAAAJLqokxe5OUU4o5YBpQEEpTK2Sgsqg1DF3DLD4kyFPdRvBZ82u6VKo5ANQG0RCe-h61bQX7e9niJYWks7BWmnXtppcPa3x8_RDnVz5aNR-qizKJfmAm1nq8WsKi_9KvoAo0_HQA
  priority: 102
  providerName: Springer Nature
Title Stability and Hopf bifurcation of a predator-prey model with Smith growth rate and Monod–Haldane functional response
URI https://link.springer.com/article/10.1186/s13662-025-03912-0
https://www.proquest.com/docview/3165585897
Volume 2025
WOSCitedRecordID wos001418208600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2731-4235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2731-4235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2731-4235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2731-4235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2731-4235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1839
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2731-4235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002923708
  issn: 1687-1839
  databaseCode: C24
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH6syQ7rYV23lXVNgw49TiSWHUk-lS2kpIwFsx_Q9WIkSyqFYmdOWsit_0P_w_4lfZKdZu1hl11sgUAYPenT956e3wdwJJTQMWIjNdagg2KVoqnmBbVDY5V0eIIZE8QmxGwmz87SrA24Ldq0yjUmBqA2VeFj5IM44iOktjIVx_M_1KtG-dvVVkJjC7oRY5Ff518FfXS40iToTkYcN5JnAuufZiQfLKKYc0a9mKuvkY6tJxTz2a1oOGxOdv73M9_A65Zmks_NutiFF7Z8C9t_FR98BzfIM0Nm7Iqo0pBpNXdEX7rrugnikcoRRea1Nd4tp9hYkSCbQ3zoloSIDLlAJx5fvtxEGAQRojL3t3dTdWVUaYk_NZtgI6mbZFz7Hn6dTH6Op7RVYaBzJqIlTX0FZp0OlWGxsbpgwo0KX3hKWeEKf9GpkSMIbYSQCFnKSSuNi3HyLbIDRJA96JRVaT8AKZjjyHcQXplKnDaSqWGkE-G45Umho33orSc1b7fSIt_M6D58Wptl0x2cGMnzxqA5GjQPBs2HH_892gG8Yt78ITWlB51lfW0P4WVxs7xc1H3ofpnMsu992BqzpB-WVd_nhf7AZzY6x_7s9Fv2-wFku9kU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RqFQ4QGlB_LY-wK0WGyfYzgEhxI8WLaw4UIlbasc2QkLJkl1Ae-MdeA8eiidh7Gz4O3Dj0FMsRbKU-PPMN-PxfABrQgkdo22kxhoMUKxSNNU8p7ZlrJIOPZgxQWxCdLvy7Cw9GYOH5i6ML6tsbGIw1KbMfY58I474JlJbmYrt3hX1qlH-dLWR0Khh0bHDWwzZ-luHe7i-64wd7J_utulIVYD2mIgGNPUdhXXaUobFxuqcCbeZ-0ZKygqX-4M7jT5PaCOExC2onLTSuJiliUVvhzsC5_0CE0kshe_V3xH0OcBLk6BzGXHcuJ55NJd0JN_oRzHnjHrxWN-THUdvKO27U9jg3A5m_rff8h2mRzSa7NS4n4UxW_yAqVfNFX_CDfLoUPk7JKowpF32HNEX7rqqk5SkdESRXmWNTztQHAxJkAUiPjVNQsaJnFflLT58O40wCVrA0jze3bfVpVGFJZ4V1MlUUtXFxnYO_n7Kh8_DeFEWdgFIzhxHPofug6nEaSOZakU6EY5bnuQ6WoSVZhGzkanoZy8ruAh_Ghi8vA5BmuRZDaAMAZQFAGWtpY9n-w3f2qfHR9nRYbezDJPMQy-U4azA-KC6tqvwNb8ZXPSrXwHEBP59NjyeADSiMAo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BrRAcaGlB_JX6QG9Yu3GytnNACEFXixatOFCJW7BjGyGhZMkuoL3xDrxNH6dPwtjZAO2hNw6cYinSSIm_mflmPJ4B2BFK6BhtIzXWYIBilaKp5jm1bWOVdOjBjAnDJsRgIM_P09MZ-N3chfFllY1NDIbalLnPkbfiiHeQ2spUtNy0LOL0qLs_vKF-gpQ_aW3GadQQ6dvJPYZvo73jI9zrH4x1f54d9uh0wgAdMhGNaeq7C-u0rQyLjdU5E66T-6ZKygqX-0M8jf5PaCOERHVUTlppXMzSxKLnQ-1AubPwAb1wx-tYX9DnYC9NwszLiKMSexbSXNiRvDWKYs4Z9YNkfX92XP1Fb_85kQ2OrvvpPf-iz7A0pdfkoNaHZZixxRdYfNV08SvcIb8OFcETogpDeuXQEX3lbqs6eUlKRxQZVtb4dATFxYSEcUHEp6xJyESRy6q8x4dvsxGEoGUszZ-Hx566NqqwxLOFOslKqroI2a7Arzf58FWYK8rCrgHJmePI89CtMJU4bSRT7UgnwnHLk1xH67DVbGg2NSGj7GU312G3gcTL6xC8SZ7VYMoQTFkAU9be-L-07zCPqMhOjgf9TVhgHoWhOmcL5sbVrf0GH_O78dWo2g54JnDx1uh4AnZVOMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Hopf+bifurcation+of+a+predator-prey+model+with+Smith+growth+rate+and+Monod%E2%80%93Haldane+functional+response&rft.jtitle=Advances+in+difference+equations&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1687-1839&rft.eissn=1687-1847&rft.volume=2025&rft.issue=1&rft.spage=46&rft_id=info:doi/10.1186%2Fs13662-025-03912-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1839&client=summon