Convergence for nonconvex ADMM, with applications to CT imaging

The alternating direction method of multipliers (ADMM) algorithm is a powerful and flexible tool for complex optimization problems of the form . ADMM exhibits robust empirical performance across a range of challenging settings including nonsmoothness and nonconvexity of the objective functions and ,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of machine learning research Ročník 25
Hlavní autoři: Barber, Rina Foygel, Sidky, Emil Y
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 2024
Témata:
ISSN:1532-4435
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The alternating direction method of multipliers (ADMM) algorithm is a powerful and flexible tool for complex optimization problems of the form . ADMM exhibits robust empirical performance across a range of challenging settings including nonsmoothness and nonconvexity of the objective functions and , and provides a simple and natural approach to the inverse problem of image reconstruction for computed tomography (CT) imaging. From the theoretical point of view, existing results for convergence in the nonconvex setting generally assume smoothness in at least one of the component functions in the objective. In this work, our new theoretical results provide convergence guarantees under a restricted strong convexity assumption without requiring smoothness or differentiability, while still allowing differentiable terms to be treated approximately if needed. We validate these theoretical results empirically, with a simulated example where both and are nondifferentiable-and thus outside the scope of existing theory-as well as a simulated CT image reconstruction problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1532-4435