Giant g‐factor in Self‐Intercalated 2D TaS2

Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. The self‐intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g‐facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Jg. 18; H. 38; S. e2201975 - n/a
Hauptverfasser: Wang, Ziying, Wang, Zishen, Zhou, Xin, Fu, Wei, Li, Haohan, Liu, Chaofei, Qiao, Jingsi, Quek, Su Ying, Su, Chenliang, Feng, Yuanping, Loh, Kian Ping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Wiley Subscription Services, Inc 01.09.2022
Schlagworte:
ISSN:1613-6810, 1613-6829, 1613-6829
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. The self‐intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g‐factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g‐factor and characterize the electronic structure of the self‐intercalated phase of 2H‐TaS2. In Ta7S12, a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77. This work establishes self‐intercalation as an approach for tuning the g‐factor. Central to the application of spintronics is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. Through scanning tunneling microscopy studies, the self‐intercalated phase of 2H‐TaS2 shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77, which is 20‐folds larger than that of pristine 2H‐TaS2.
AbstractList Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. The self‐intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g‐factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g‐factor and characterize the electronic structure of the self‐intercalated phase of 2H‐TaS2. In Ta7S12, a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77. This work establishes self‐intercalation as an approach for tuning the g‐factor. Central to the application of spintronics is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. Through scanning tunneling microscopy studies, the self‐intercalated phase of 2H‐TaS2 shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77, which is 20‐folds larger than that of pristine 2H‐TaS2.
Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. The self‐intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g‐factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g‐factor and characterize the electronic structure of the self‐intercalated phase of 2H‐TaS2. In Ta7S12, a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77. This work establishes self‐intercalation as an approach for tuning the g‐factor.
Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g-factor. The self-intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g-factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g-factor and characterize the electronic structure of the self-intercalated phase of 2H-TaS2 . In Ta7 S12 , a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T-1 , equivalent to an effective g-factor of ≈77. This work establishes self-intercalation as an approach for tuning the g-factor.Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g-factor. The self-intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g-factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g-factor and characterize the electronic structure of the self-intercalated phase of 2H-TaS2 . In Ta7 S12 , a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T-1 , equivalent to an effective g-factor of ≈77. This work establishes self-intercalation as an approach for tuning the g-factor.
Author Su, Chenliang
Feng, Yuanping
Wang, Ziying
Li, Haohan
Liu, Chaofei
Qiao, Jingsi
Zhou, Xin
Loh, Kian Ping
Quek, Su Ying
Wang, Zishen
Fu, Wei
Author_xml – sequence: 1
  givenname: Ziying
  orcidid: 0000-0002-5291-1979
  surname: Wang
  fullname: Wang, Ziying
  organization: National University of Singapore
– sequence: 2
  givenname: Zishen
  surname: Wang
  fullname: Wang, Zishen
  organization: National University of Singapore
– sequence: 3
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
  organization: National University of Singapore
– sequence: 4
  givenname: Wei
  surname: Fu
  fullname: Fu, Wei
  organization: Agency for Science Technology and Research (ASTAR)
– sequence: 5
  givenname: Haohan
  surname: Li
  fullname: Li, Haohan
  organization: National University of Singapore
– sequence: 6
  givenname: Chaofei
  surname: Liu
  fullname: Liu, Chaofei
  organization: National University of Singapore
– sequence: 7
  givenname: Jingsi
  surname: Qiao
  fullname: Qiao, Jingsi
  organization: National University of Singapore
– sequence: 8
  givenname: Su Ying
  surname: Quek
  fullname: Quek, Su Ying
  organization: National University of Singapore
– sequence: 9
  givenname: Chenliang
  surname: Su
  fullname: Su, Chenliang
  organization: Shenzhen University
– sequence: 10
  givenname: Yuanping
  surname: Feng
  fullname: Feng, Yuanping
  email: phyfyp@nus.edu.sg
  organization: National University of Singapore
– sequence: 11
  givenname: Kian Ping
  surname: Loh
  fullname: Loh, Kian Ping
  email: chmlohkp@nus.edu.sg
  organization: National University of Singapore
BookMark eNpdkL1OwzAYRS1UJNrCyhyJhSWtf2I7HlGhpVIQQ8tsfakdlMpxSpwKdeMReEaeBFdFHZi-Hx1dXZ0RGvjWW4RuCZ4QjOk0NM5NKKYUEyX5BRoSQVgqcqoG553gKzQKYYsxIzSTQzRd1OD75P3n67uCTd92Se2TlXVVfCx9b7sNOOitSehjsoYVvUaXFbhgb_7mGL3Nn9az57R4XSxnD0W6o0LwFETMB0U4scpKUXGlFFRYGW4wGMCGZKVkVrCScMpMRoU0VZmDNNKokjM2Rven3F3Xfuxt6HVTh411Drxt90FTiTlTMlcyonf_0G2773xsFykiYweW0UipE_VZO3vQu65uoDtogvVRnj7K02d5evVSFOeL_QLbo2YN
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202201975
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202201975
Genre article
GrantInformation_xml – fundername: Singapore's Ministry of Education Tier 2
  funderid: MOE‐T2EP50220‐0002
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-p2665-a6312a9151e9e76f5999af09d5d0ada0d14b73e63b1523d4267dfb8a7d7d9b533
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842350300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 07:20:40 EDT 2025
Fri Jul 25 12:11:07 EDT 2025
Wed Jan 22 16:23:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2665-a6312a9151e9e76f5999af09d5d0ada0d14b73e63b1523d4267dfb8a7d7d9b533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5291-1979
PQID 2717151342
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2705397897
proquest_journals_2717151342
wiley_primary_10_1002_smll_202201975_SMLL202201975
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2017; 119
2017; 2
2006; 50
2018; 360
2020; 581
1974; 30
2019; 2
2010; 105
2021; 126
2021; 103
2018; 563
2015; 11
2019; 14
2007
2020; 14
2016; 93
2020; 124
2014; 89
1996; 77
2004; 76
2017; 95
2020; 7
2018; 6
2018; 18
2018; 3
2015; 114
1963; 30
2006; 27
2017; 12
2019; 114
2016; 117
2018; 12
2012; 8
1996; 6
2018; 13
References_xml – volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– volume: 76
  start-page: 323
  year: 2004
  publication-title: Rev. Mod. Phys.
– volume: 581
  start-page: 171
  year: 2020
  publication-title: Nature
– volume: 563
  start-page: 94
  year: 2018
  publication-title: Nature
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 101
  year: 2006
  publication-title: IBM J. Res. Dev.
– volume: 11
  start-page: 148
  year: 2015
  publication-title: Nat. Phys.
– volume: 126
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 274
  year: 2019
  publication-title: Nat. Electron.
– volume: 14
  start-page: 408
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 30
  start-page: 275
  year: 1963
  publication-title: Prog. Theor. Phys.
– volume: 360
  start-page: 1218
  year: 2018
  publication-title: Science
– year: 2007
– volume: 3
  start-page: 27
  year: 2018
  publication-title: npj Quantum Mater.
– volume: 360
  start-page: 1214
  year: 2018
  publication-title: Science
– volume: 14
  start-page: 4636
  year: 2020
  publication-title: ACS Nano
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 1191
  year: 1974
  publication-title: Philos. Mag.
– volume: 8
  start-page: 557
  year: 2012
  publication-title: Nat. Phys.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 544
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 757
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 27
  start-page: 1787
  year: 2006
  publication-title: J. Comput. Chem.
– volume: 114
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 18
  start-page: 5482
  year: 2018
  publication-title: Nano Lett.
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 141
  year: 2015
  publication-title: Nat. Phys.
– volume: 6
  year: 2018
  publication-title: 2D Mater.
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 7
  year: 2020
  publication-title: Appl. Phys. Rev.
SSID ssj0031247
Score 2.427717
Snippet Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor....
Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g-factor....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2201975
SubjectTerms Charge transfer
Density of states
Electronic structure
Ferromagnetism
g‐factor
Intercalation
Interlayers
Magnetic fields
Nanotechnology
Scanning tunneling microscopy
self‐intercalation
strong correlation
TaS 2
Title Giant g‐factor in Self‐Intercalated 2D TaS2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202201975
https://www.proquest.com/docview/2717151342
https://www.proquest.com/docview/2705397897
Volume 18
WOSCitedRecordID wos000842350300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4IeNCDbyOKpCZeG8r2sd2jEdEDEiOQcGt2u7uGBAuh4Nmf4G_0lzjblgpXvfX9mM7s981u9xuAW8r82OdS2I4g3Pa0dG0W-4Et2ypAfkx9XhSboP1-OB6zl41Z_Lk-RNnhZiIja69NgHORtn5FQ9P3qRk6IIhgjPoVqJmZVZh-1Tqv3VFv3Rq7iF9ZgRWELdtob62FGx3S2r7CFsXcJKoZ0nQP__-MR3BQsEzrLneLY9hRyQnsb2gPnkLrER1jab19f37lNXesSWIN1FTjhqybED8e8lBpkY415ANyBqPuw_D-yS6qJ9hzBF3f5gG-O2eI6IopGmgfqSDXDpO-dLjkjmx7groqcAVCuCsRqanUIuRUUskEssBzqCazRF2AFVBH6rZA6kSJp10VSqG51jGTJBZh7NWhsTZdVIRAGhFMFPHmrkfqcFPuRuc1IxI8UbOVOQbbAMxjGa0DyQwZzXORjSiXUyaRMWFUmjAaPPd65drlX066gj2znP8n1oDqcrFS17Abfywn6aIJFToOm4UT_QB8V8gi
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BiwQc2BGFAkHiGjV1FsdHBJQi0grRVuotsmMbVSopooUzn8A38iWMkzS0V8Qxzj6Z8XseO28ALinzE59LYTuCcNvT0rVZ4ge2bKoA-TH1eVFsgna74XDIHovVhOZfmFwfoky4mcjI-msT4CYh3fhVDZ2-jM3cAUEIY9RfhaoXuDSsQPXmqTWI5t2xiwCWVVhB3LKN-NZcudEhjeUrLHHMRaaaQU1r-x8ecge2Cp5pXeWOsQsrKt2DzQX1wX1o3KFrzKzn78-vvOqONUqtnhprbMgShfj5kIlKi9xYfd4jBzBo3fav23ZRP8F-Rdj1bR7gy3OGmK6YooH2kQxy7TDpS4dL7simJ6irAlcgiLsSsZpKLUJOJZVMIA88hEo6SdURWAF1pG4KJE-UeNpVoRSaa50wSRIRJl4N6nPbxUUQTGOCQ0W8ueuRGlyUu9F9zZwET9Xk3RyDvQCOZBmtAcksGb_mMhtxLqhMYmPCuDRh3OtEUbl1_JeTzmG93e9EcXTffTiBDdOerxqrQ2X29q5OYS35mI2mb2eFL_0A0pHLKg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4oGKMH30YUtSZeG8q222WPRkSNSIhA4q3Z7e4aEiyEh2d_gr_RX-JsWxCuxmO37-nMfN8--g3ANeM0pkJJ15NEuIFRvstjGrqqqkPkx4yKvNgEa7Vqr6-8na8mtP_CZPoQiwE3GxlpvrYBrkfKVH5VQyfvAzt3QBDCOKPrUAwop0EBivWXRq85T8c-AlhaYQVxy7XiW3PlRo9UVq-wwjGXmWoKNY3df3jIPdjJeaZzkznGPqzp5AC2l9QHD6Fyj64xdd6-P7-yqjtOP3E6emCwIR0oxM-HTFQ5pO50RYccQa9x1719cPP6Ce4IYZe6IsSXFxwxXXPNQkORDArjcUWVJ5TwVDWQzNehLxHEfYVYzZSRNcEUU1wiDzyGQjJM9Ak4IfOUqUokT4wExtc1JY0wJuaKxLIWByUoz20X5UEwiQh2FfHmfkBKcLXYje5r5yREooczewxmAezJclYCkloyGmUyG1EmqEwia8JoYcKo89xsLrZO_3LSJWy2642o-dh6OoMt25wtGitDYTqe6XPYiD-m_cn4InelH6osyqU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+g%E2%80%90factor+in+Self%E2%80%90Intercalated+2D+TaS2&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Ziying&rft.au=Wang%2C+Zishen&rft.au=Zhou%2C+Xin&rft.au=Fu%2C+Wei&rft.date=2022-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202201975&rft.externalDBID=10.1002%252Fsmll.202201975&rft.externalDocID=SMLL202201975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon