Giant g‐factor in Self‐Intercalated 2D TaS2
Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. The self‐intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g‐facto...
Gespeichert in:
| Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Jg. 18; H. 38; S. e2201975 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
Wiley Subscription Services, Inc
01.09.2022
|
| Schlagworte: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. The self‐intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g‐factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g‐factor and characterize the electronic structure of the self‐intercalated phase of 2H‐TaS2. In Ta7S12, a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77. This work establishes self‐intercalation as an approach for tuning the g‐factor.
Central to the application of spintronics is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. Through scanning tunneling microscopy studies, the self‐intercalated phase of 2H‐TaS2 shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77, which is 20‐folds larger than that of pristine 2H‐TaS2. |
|---|---|
| AbstractList | Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. The self‐intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g‐factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g‐factor and characterize the electronic structure of the self‐intercalated phase of 2H‐TaS2. In Ta7S12, a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77. This work establishes self‐intercalation as an approach for tuning the g‐factor.
Central to the application of spintronics is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. Through scanning tunneling microscopy studies, the self‐intercalated phase of 2H‐TaS2 shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77, which is 20‐folds larger than that of pristine 2H‐TaS2. Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor. The self‐intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g‐factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g‐factor and characterize the electronic structure of the self‐intercalated phase of 2H‐TaS2. In Ta7S12, a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T−1, equivalent to an effective g‐factor of ≈77. This work establishes self‐intercalation as an approach for tuning the g‐factor. Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g-factor. The self-intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g-factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g-factor and characterize the electronic structure of the self-intercalated phase of 2H-TaS2 . In Ta7 S12 , a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T-1 , equivalent to an effective g-factor of ≈77. This work establishes self-intercalation as an approach for tuning the g-factor.Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g-factor. The self-intercalation of layered transitional metal dichalcogenides with native metal atoms can serve as a new strategy to enhance the g-factor by inducing ferromagnetic instability in the system via interlayer charge transfer. Here, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are performed to extract the g-factor and characterize the electronic structure of the self-intercalated phase of 2H-TaS2 . In Ta7 S12 , a sharp density of states (DOS) peak due to the Ta intercalant appears at the Fermi level, which satisfies the Stoner criteria for spontaneous ferromagnetism, leading to spin split states. The DOS peak shows sensitivity to magnetic field up to 1.85 mV T-1 , equivalent to an effective g-factor of ≈77. This work establishes self-intercalation as an approach for tuning the g-factor. |
| Author | Su, Chenliang Feng, Yuanping Wang, Ziying Li, Haohan Liu, Chaofei Qiao, Jingsi Zhou, Xin Loh, Kian Ping Quek, Su Ying Wang, Zishen Fu, Wei |
| Author_xml | – sequence: 1 givenname: Ziying orcidid: 0000-0002-5291-1979 surname: Wang fullname: Wang, Ziying organization: National University of Singapore – sequence: 2 givenname: Zishen surname: Wang fullname: Wang, Zishen organization: National University of Singapore – sequence: 3 givenname: Xin surname: Zhou fullname: Zhou, Xin organization: National University of Singapore – sequence: 4 givenname: Wei surname: Fu fullname: Fu, Wei organization: Agency for Science Technology and Research (ASTAR) – sequence: 5 givenname: Haohan surname: Li fullname: Li, Haohan organization: National University of Singapore – sequence: 6 givenname: Chaofei surname: Liu fullname: Liu, Chaofei organization: National University of Singapore – sequence: 7 givenname: Jingsi surname: Qiao fullname: Qiao, Jingsi organization: National University of Singapore – sequence: 8 givenname: Su Ying surname: Quek fullname: Quek, Su Ying organization: National University of Singapore – sequence: 9 givenname: Chenliang surname: Su fullname: Su, Chenliang organization: Shenzhen University – sequence: 10 givenname: Yuanping surname: Feng fullname: Feng, Yuanping email: phyfyp@nus.edu.sg organization: National University of Singapore – sequence: 11 givenname: Kian Ping surname: Loh fullname: Loh, Kian Ping email: chmlohkp@nus.edu.sg organization: National University of Singapore |
| BookMark | eNpdkL1OwzAYRS1UJNrCyhyJhSWtf2I7HlGhpVIQQ8tsfakdlMpxSpwKdeMReEaeBFdFHZi-Hx1dXZ0RGvjWW4RuCZ4QjOk0NM5NKKYUEyX5BRoSQVgqcqoG553gKzQKYYsxIzSTQzRd1OD75P3n67uCTd92Se2TlXVVfCx9b7sNOOitSehjsoYVvUaXFbhgb_7mGL3Nn9az57R4XSxnD0W6o0LwFETMB0U4scpKUXGlFFRYGW4wGMCGZKVkVrCScMpMRoU0VZmDNNKokjM2Rven3F3Xfuxt6HVTh411Drxt90FTiTlTMlcyonf_0G2773xsFykiYweW0UipE_VZO3vQu65uoDtogvVRnj7K02d5evVSFOeL_QLbo2YN |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202201975 |
| DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | SMLL202201975 |
| Genre | article |
| GrantInformation_xml | – fundername: Singapore's Ministry of Education Tier 2 funderid: MOE‐T2EP50220‐0002 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 LH4 |
| ID | FETCH-LOGICAL-p2665-a6312a9151e9e76f5999af09d5d0ada0d14b73e63b1523d4267dfb8a7d7d9b533 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842350300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Fri Sep 05 07:20:40 EDT 2025 Fri Jul 25 12:11:07 EDT 2025 Wed Jan 22 16:23:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 38 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p2665-a6312a9151e9e76f5999af09d5d0ada0d14b73e63b1523d4267dfb8a7d7d9b533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5291-1979 |
| PQID | 2717151342 |
| PQPubID | 1046358 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2705397897 proquest_journals_2717151342 wiley_primary_10_1002_smll_202201975_SMLL202201975 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 120 2017; 119 2017; 2 2006; 50 2018; 360 2020; 581 1974; 30 2019; 2 2010; 105 2021; 126 2021; 103 2018; 563 2015; 11 2019; 14 2007 2020; 14 2016; 93 2020; 124 2014; 89 1996; 77 2004; 76 2017; 95 2020; 7 2018; 6 2018; 18 2018; 3 2015; 114 1963; 30 2006; 27 2017; 12 2019; 114 2016; 117 2018; 12 2012; 8 1996; 6 2018; 13 |
| References_xml | – volume: 103 year: 2021 publication-title: Phys. Rev. B – volume: 76 start-page: 323 year: 2004 publication-title: Rev. Mod. Phys. – volume: 581 start-page: 171 year: 2020 publication-title: Nature – volume: 563 start-page: 94 year: 2018 publication-title: Nature – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 50 start-page: 101 year: 2006 publication-title: IBM J. Res. Dev. – volume: 11 start-page: 148 year: 2015 publication-title: Nat. Phys. – volume: 126 year: 2021 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 274 year: 2019 publication-title: Nat. Electron. – volume: 14 start-page: 408 year: 2019 publication-title: Nat. Nanotechnol. – volume: 30 start-page: 275 year: 1963 publication-title: Prog. Theor. Phys. – volume: 360 start-page: 1218 year: 2018 publication-title: Science – year: 2007 – volume: 3 start-page: 27 year: 2018 publication-title: npj Quantum Mater. – volume: 360 start-page: 1214 year: 2018 publication-title: Science – volume: 14 start-page: 4636 year: 2020 publication-title: ACS Nano – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 1191 year: 1974 publication-title: Philos. Mag. – volume: 8 start-page: 557 year: 2012 publication-title: Nat. Phys. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 544 year: 2018 publication-title: Nat. Nanotechnol. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 757 year: 2017 publication-title: Nat. Nanotechnol. – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 27 start-page: 1787 year: 2006 publication-title: J. Comput. Chem. – volume: 114 year: 2019 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 18 start-page: 5482 year: 2018 publication-title: Nano Lett. – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 141 year: 2015 publication-title: Nat. Phys. – volume: 6 year: 2018 publication-title: 2D Mater. – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 7 year: 2020 publication-title: Appl. Phys. Rev. |
| SSID | ssj0031247 |
| Score | 2.427717 |
| Snippet | Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g‐factor.... Central to the application of spintronic devices is the ability to manipulate spins by electric and magnetic fields, which relies on a large Landé g-factor.... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| StartPage | e2201975 |
| SubjectTerms | Charge transfer Density of states Electronic structure Ferromagnetism g‐factor Intercalation Interlayers Magnetic fields Nanotechnology Scanning tunneling microscopy self‐intercalation strong correlation TaS 2 |
| Title | Giant g‐factor in Self‐Intercalated 2D TaS2 |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202201975 https://www.proquest.com/docview/2717151342 https://www.proquest.com/docview/2705397897 |
| Volume | 18 |
| WOSCitedRecordID | wos000842350300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4IeNCDbyOKpCZeG8r2sd2jEdEDEiOQcGt2u7uGBAuh4Nmf4G_0lzjblgpXvfX9mM7s981u9xuAW8r82OdS2I4g3Pa0dG0W-4Et2ypAfkx9XhSboP1-OB6zl41Z_Lk-RNnhZiIja69NgHORtn5FQ9P3qRk6IIhgjPoVqJmZVZh-1Tqv3VFv3Rq7iF9ZgRWELdtob62FGx3S2r7CFsXcJKoZ0nQP__-MR3BQsEzrLneLY9hRyQnsb2gPnkLrER1jab19f37lNXesSWIN1FTjhqybED8e8lBpkY415ANyBqPuw_D-yS6qJ9hzBF3f5gG-O2eI6IopGmgfqSDXDpO-dLjkjmx7groqcAVCuCsRqanUIuRUUskEssBzqCazRF2AFVBH6rZA6kSJp10VSqG51jGTJBZh7NWhsTZdVIRAGhFMFPHmrkfqcFPuRuc1IxI8UbOVOQbbAMxjGa0DyQwZzXORjSiXUyaRMWFUmjAaPPd65drlX066gj2znP8n1oDqcrFS17Abfywn6aIJFToOm4UT_QB8V8gi |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BiwQc2BGFAkHiGjV1FsdHBJQi0grRVuotsmMbVSopooUzn8A38iWMkzS0V8Qxzj6Z8XseO28ALinzE59LYTuCcNvT0rVZ4ge2bKoA-TH1eVFsgna74XDIHovVhOZfmFwfoky4mcjI-msT4CYh3fhVDZ2-jM3cAUEIY9RfhaoXuDSsQPXmqTWI5t2xiwCWVVhB3LKN-NZcudEhjeUrLHHMRaaaQU1r-x8ecge2Cp5pXeWOsQsrKt2DzQX1wX1o3KFrzKzn78-vvOqONUqtnhprbMgShfj5kIlKi9xYfd4jBzBo3fav23ZRP8F-Rdj1bR7gy3OGmK6YooH2kQxy7TDpS4dL7simJ6irAlcgiLsSsZpKLUJOJZVMIA88hEo6SdURWAF1pG4KJE-UeNpVoRSaa50wSRIRJl4N6nPbxUUQTGOCQ0W8ueuRGlyUu9F9zZwET9Xk3RyDvQCOZBmtAcksGb_mMhtxLqhMYmPCuDRh3OtEUbl1_JeTzmG93e9EcXTffTiBDdOerxqrQ2X29q5OYS35mI2mb2eFL_0A0pHLKg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4oGKMH30YUtSZeG8q222WPRkSNSIhA4q3Z7e4aEiyEh2d_gr_RX-JsWxCuxmO37-nMfN8--g3ANeM0pkJJ15NEuIFRvstjGrqqqkPkx4yKvNgEa7Vqr6-8na8mtP_CZPoQiwE3GxlpvrYBrkfKVH5VQyfvAzt3QBDCOKPrUAwop0EBivWXRq85T8c-AlhaYQVxy7XiW3PlRo9UVq-wwjGXmWoKNY3df3jIPdjJeaZzkznGPqzp5AC2l9QHD6Fyj64xdd6-P7-yqjtOP3E6emCwIR0oxM-HTFQ5pO50RYccQa9x1719cPP6Ce4IYZe6IsSXFxwxXXPNQkORDArjcUWVJ5TwVDWQzNehLxHEfYVYzZSRNcEUU1wiDzyGQjJM9Ak4IfOUqUokT4wExtc1JY0wJuaKxLIWByUoz20X5UEwiQh2FfHmfkBKcLXYje5r5yREooczewxmAezJclYCkloyGmUyG1EmqEwia8JoYcKo89xsLrZO_3LSJWy2642o-dh6OoMt25wtGitDYTqe6XPYiD-m_cn4InelH6osyqU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+g%E2%80%90factor+in+Self%E2%80%90Intercalated+2D+TaS2&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Ziying&rft.au=Wang%2C+Zishen&rft.au=Zhou%2C+Xin&rft.au=Fu%2C+Wei&rft.date=2022-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202201975&rft.externalDBID=10.1002%252Fsmll.202201975&rft.externalDocID=SMLL202201975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |