N ‐(2‐aminoethyl) Acetamide Additive Enables Phase‐Pure and Stable α‐FAPbI3 for Efficient Self‐Powered Photodetectors

Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 34; no. 51; pp. e2208325 - n/a
Main Authors: Cheng, Wenjie, He, Xiang, Wang, Jian‐Gan, Tian, Wei, Li, Liang
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01.12.2022
Subjects:
ISSN:0935-9648, 1521-4095, 1521-4095
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α‐FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure‐phase FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N‐(2‐aminoethyl) acetamide and perovskite reduces the potential barrier in the phase‐transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. A self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W−1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high‐quality phase‐pure α‐FAPbI3 perovskite and associated devices. A facile strategy to obtain phase‐pure α‐FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The additive reduces the potential barrier in the phase transition process, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. The resultant self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits superior performance.
AbstractList Formamidinium-lead triiodide (FAPbI3 ) perovskite is considered as one of the most promising perovskite materials for high-performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α-FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure-phase FAPbI3 perovskite films by introducing N-(2-aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N-(2-aminoethyl) acetamide and perovskite reduces the potential barrier in the phase-transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high-quality and phase-pure α-FAPbI3 perovskite. A self-powered photodetector based on the as-fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W-1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high-quality phase-pure α-FAPbI3 perovskite and associated devices.Formamidinium-lead triiodide (FAPbI3 ) perovskite is considered as one of the most promising perovskite materials for high-performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α-FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure-phase FAPbI3 perovskite films by introducing N-(2-aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N-(2-aminoethyl) acetamide and perovskite reduces the potential barrier in the phase-transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high-quality and phase-pure α-FAPbI3 perovskite. A self-powered photodetector based on the as-fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W-1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high-quality phase-pure α-FAPbI3 perovskite and associated devices.
Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α‐FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure‐phase FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N‐(2‐aminoethyl) acetamide and perovskite reduces the potential barrier in the phase‐transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. A self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W−1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high‐quality phase‐pure α‐FAPbI3 perovskite and associated devices. A facile strategy to obtain phase‐pure α‐FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The additive reduces the potential barrier in the phase transition process, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. The resultant self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits superior performance.
Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α‐FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure‐phase FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N‐(2‐aminoethyl) acetamide and perovskite reduces the potential barrier in the phase‐transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. A self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W−1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high‐quality phase‐pure α‐FAPbI3 perovskite and associated devices.
Author Cheng, Wenjie
Tian, Wei
He, Xiang
Li, Liang
Wang, Jian‐Gan
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Cheng
  fullname: Cheng, Wenjie
  organization: Soochow University
– sequence: 2
  givenname: Xiang
  surname: He
  fullname: He, Xiang
  organization: Soochow University
– sequence: 3
  givenname: Jian‐Gan
  surname: Wang
  fullname: Wang, Jian‐Gan
  organization: Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU)
– sequence: 4
  givenname: Wei
  orcidid: 0000-0001-8941-6288
  surname: Tian
  fullname: Tian, Wei
  email: wtian@suda.edu.cn
  organization: Soochow University
– sequence: 5
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  email: lli@suda.edu.cn
  organization: Soochow University
BookMark eNpdkcFu2zAMhoUhA5Zmu-4sYJfu4I6WIlk6Glm6BsjaAO3OhmxRqAvHyiylRW55hL7KXqQP0SepjA499ELyJz8SBP4TMul9j4R8zeEsB2A_jN2aMwaMgeJMfCDTXLA8m4MWEzIFzUWm5Vx9Iich3AGAliCn5HhJn4-PpywFs217j_H20H2nZYMxaYu0tLaN7T3SZW_qDgPd3JqACd_sB6Smt_Q6jgP69C81z8tNveLU-YEunWubFvtIr7Fz44J_wAFtOuCjtxixiX4In8lHZ7qAX_7nGflzvrxZXGTrq1-rRbnOdkxKkSleIwjkgmtXWCVNkrluBHPSKOkK4NKqwihXOCubVKimhqbGIlcq17XmM3L6enc3-L97DLHatqHBrjM9-n2oWMHEnGsQkNBv79A7vx_69F2ihFQSoBgp_Uo9tB0eqt3Qbs1wqHKoRjeq0Y3qzY2q_Pm7fFP8BQVAhvY
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202208325
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202208325
Genre article
GrantInformation_xml – fundername: Key University Science Research Project of Jiangsu Province
  funderid: 21KJA430005
– fundername: State Key Laboratory of Solidification Processing in NPU
  funderid: SKLSP202219
– fundername: National Natural Science Foundation of China
  funderid: 52025028; 52072254; 51872191
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
O8X
7X8
ID FETCH-LOGICAL-p2665-83be05e3539f7d86abe019c52f6a86f7036d87a8f7fd6c7a88cb0cbe718819b93
IEDL.DBID DRFUL
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888652500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 13:26:56 EDT 2025
Sun Nov 30 05:01:02 EST 2025
Wed Jan 22 16:20:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2665-83be05e3539f7d86abe019c52f6a86f7036d87a8f7fd6c7a88cb0cbe718819b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8941-6288
PQID 2756860070
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2725439050
proquest_journals_2756860070
wiley_primary_10_1002_adma_202208325_ADMA202208325
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2017; 7
2019; 9
2021; 6
2017; 8
2019; 3
2015; 5
2021; 20
2018; 140
2021; 2
2019; 31
2015; 347
2019; 10
2022; 91
2019; 366
2020; 11
2020; 32
2020; 10
2018; 20
2021; 13
2021; 35
2018; 9
2015; 25
2021; 31
2021; 33
2021; 11
2020; 31
2019; 63
2020; 30
2022; 5
2022; 7
2013; 118
2013; 52
2022; 34
2014; 16
2014; 14
2018; 52
2022; 32
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 1337
  year: 2021
  publication-title: Nat. Mater.
– volume: 3
  start-page: 2179
  year: 2019
  publication-title: Joule
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 8
  start-page: 2119
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 91
  year: 2022
  publication-title: Nano Energy
– volume: 20
  start-page: 6800
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 11
  start-page: 1006
  year: 2020
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 366
  start-page: 1509
  year: 2019
  publication-title: Science
– volume: 140
  start-page: 6317
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3608
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 118
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1487
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 10
  start-page: 815
  year: 2019
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 3511
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 300
  year: 2018
  publication-title: Nano Energy
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 7
  start-page: 1066
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 25
  start-page: 1120
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1464
  year: 2019
  publication-title: Joule
– volume: 5
  start-page: 293
  year: 2017
  publication-title: Mater. Today Energy
– volume: 9
  start-page: 3021
  year: 2018
  publication-title: Nat. Commun.
– volume: 35
  year: 2021
  publication-title: Energy Fuels
SSID ssj0009606
Score 2.565656
Snippet Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of...
Formamidinium-lead triiodide (FAPbI3 ) perovskite is considered as one of the most promising perovskite materials for high-performance photodetectors because...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2208325
SubjectTerms additive
Carrier transport
Chemical bonds
Crystal defects
Crystal structure
FAPbI 3
Grain size
Hydrogen bonds
Materials science
Perovskites
phase transitions
photodetectors
Photometers
Quantum efficiency
Thermal stability
Title N ‐(2‐aminoethyl) Acetamide Additive Enables Phase‐Pure and Stable α‐FAPbI3 for Efficient Self‐Powered Photodetectors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202208325
https://www.proquest.com/docview/2756860070
https://www.proquest.com/docview/2725439050
Volume 34
WOSCitedRecordID wos000888652500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbtswECUaJ4tkkTafIr8GDNBFshAik6ZILYXGRgu0htHWgHcCRY4QA65kWHLWOUKukovkEDlJhpTtONt0I5CaISFgZjRPIvmGkK-RbbPI5FkQAn6rdlgeBSo2YaCt4kpL4Lyd-WITst9Xo1E8WDvF3_BDrH64ucjw72sX4Dqrrl9JQ7X1vEGMIYhgYoNsMnRe0SKbN797w5-vxLuRr6_p1vuCOOqoJXFjyK7fzvAGYq4DVZ9peh___xk_kd0FyqRJ4xZ75AMU-2RnjXvwgNz36fP9wyXDi_43LkpAi02uaGKgxr4Fmljr9xXRrj9eVdHBLWY8VB_MZ0B1YSkCVRTQp0e82UsG2Q9OEQLTrmelwGRG_8AkdwNcJTawOEFZlxZqv1BQHZJhr_v32_dgUY4hmGIWF4HiGYQCuOBxLq2KNHbbsRFoX62i3DF5WSW1ymVuI4MNZbLQZIDZD2FHFvPPpFWUBRwRKtxmHNPOuZAIx0DqTofLMGZCI_xDrzkmZ0tbpIuYqlJHVK8cnT6KL1ZijAa3xKELKOdOxx3uj0OBOsxbJp02rB1pw8_MUmeTdGWTNLn5lax6J-8ZdEq2XbvZ43JGWvVsDl_Ilrmrx9XsnGzIkTpfeOULkuXmZA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTuswELW4gHRhweMC4o2RWFwWEakdJ84yglYgSlXxkNhFjj0RSJCgNmXNJ_Ar_AgfwZcwdkKBLWITxU9FmpnMsT0-Q8heaFos1Hnm-YBr1YDloSdj7XvKSC5VBJy3MpdsIur15PV13G-iCe1dmJofYrzhZi3D_a-tgdsN6YNP1lBlHHEQY4gimPhDpgLUJVTyqaPzzlX3k3k3dAk27YGfF4eB_GBu9NnB9xm-YcyvSNW5ms78L3zkAplrcCZNasVYJBNQ_COzX9gHl8hTj749Pf9n-FD3t0UJKLO7fZpoqLBsgCbGuMgi2nYXrIa0f4M-D7v3RwOgqjAUoSo20NcXrOwk_eyEUwTBtO14KdCd0Qu4y-0Am4sNDE5QVqWByh0VDJfJVad9eXjsNQkZvAf048KTPANfABc8ziMjQ4XFVqwFSljJMLdcXkZGSuZRbkKNL1Jnvs4A_R8CjyzmK2SyKAtYJVTYcBzdyrmIEJBBpIKAR37MhEIAiHqzRjY_hJE2VjVMLVW9tIT62Lw7bkZ7sIccqoByZPvY6_2xL7APc6JJH2rejrRmaGaplUk6lkmaHJ0l49L6TwbtkL_Hl2fdtHvSO90gM7a-jnjZJJPVYARbZFo_VrfDwXajnO_xlels
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELboFlXlwF-LChQwUg_lEDVrx4lzjNiNqCirCFhpb5Fjj9VKJVntZjn3EXgVXoSH4EkYO-lu94p6iWKPbUWamcyXePwNISexGbJY2yoIAb9VI2bjQKY6DJSRXKoEOB9WvthEMpnI2Swt-mxCdxam44dY_3BznuHf187BYW7s2YY1VBlPHMQYoggmdshu5CrJDMju6Gs-vdgw78a-wKbb8AvSOJK3zI0hO9teYQtj3kWqPtTkT-7hIZ-Sxz3OpFlnGM_IA6ifk0d32AcPyM2E_r35dcrwon5c1Q2gzq4_0ExDi20DNDPGZxbRsT9gtaTFJcY8HF6sFkBVbShCVRTQP7-xM8-K6pxTBMF07HkpMJzRb3Bt3QRXiw0MLtC0jYHWbxUsD8k0H3__-CnoCzIEc4zjIpC8glAAFzy1iZGxwuYw1QI1rGRsHZeXkYmSNrEm1ngjdRXqCjD-IfCoUv6CDOqmhiNChUvH0UPLRYKADBIVRTwJUyYUAkC0m5fk-FYZZe9Vy9JR1UtHqI_i92sx-oPb5FA1NCs3xh3vT0OBY5hXTTnveDvKjqGZlU4n5VonZTb6kq1br_5n0juyV4zy8uJ88vk12XfdXcLLMRm0ixW8IQ_1z_ZquXjb2-Y_ne_o5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N+-%282-aminoethyl%29+Acetamide+Additive+Enables+Phase-Pure+and+Stable+%CE%B1-FAPbI3+for+Efficient+Self-Powered+Photodetectors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cheng%2C+Wenjie&rft.au=He%2C+Xiang&rft.au=Wang%2C+Jian-Gan&rft.au=Tian%2C+Wei&rft.date=2022-12-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=51&rft.spage=e2208325&rft_id=info:doi/10.1002%2Fadma.202208325&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon