N ‐(2‐aminoethyl) Acetamide Additive Enables Phase‐Pure and Stable α‐FAPbI3 for Efficient Self‐Powered Photodetectors
Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 34; no. 51; pp. e2208325 - n/a |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Wiley Subscription Services, Inc
01.12.2022
|
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α‐FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure‐phase FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N‐(2‐aminoethyl) acetamide and perovskite reduces the potential barrier in the phase‐transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. A self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W−1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high‐quality phase‐pure α‐FAPbI3 perovskite and associated devices.
A facile strategy to obtain phase‐pure α‐FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The additive reduces the potential barrier in the phase transition process, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. The resultant self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits superior performance. |
|---|---|
| AbstractList | Formamidinium-lead triiodide (FAPbI3 ) perovskite is considered as one of the most promising perovskite materials for high-performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α-FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure-phase FAPbI3 perovskite films by introducing N-(2-aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N-(2-aminoethyl) acetamide and perovskite reduces the potential barrier in the phase-transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high-quality and phase-pure α-FAPbI3 perovskite. A self-powered photodetector based on the as-fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W-1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high-quality phase-pure α-FAPbI3 perovskite and associated devices.Formamidinium-lead triiodide (FAPbI3 ) perovskite is considered as one of the most promising perovskite materials for high-performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α-FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure-phase FAPbI3 perovskite films by introducing N-(2-aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N-(2-aminoethyl) acetamide and perovskite reduces the potential barrier in the phase-transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high-quality and phase-pure α-FAPbI3 perovskite. A self-powered photodetector based on the as-fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W-1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high-quality phase-pure α-FAPbI3 perovskite and associated devices. Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α‐FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure‐phase FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N‐(2‐aminoethyl) acetamide and perovskite reduces the potential barrier in the phase‐transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. A self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W−1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high‐quality phase‐pure α‐FAPbI3 perovskite and associated devices. A facile strategy to obtain phase‐pure α‐FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The additive reduces the potential barrier in the phase transition process, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. The resultant self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits superior performance. Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of its narrow bandgap and superior thermal stability. Nevertheless, to realize efficient carrier transport and highly performing photodetectors, it imposes the requirement of fabricating α‐FAPbI3 with pure phase, preferred crystal orientation, large grain size, and passivated interface, which still remains challenging. Here, a facile strategy based on additive engineering to obtain pure‐phase FAPbI3 perovskite films by introducing N‐(2‐aminoethyl) acetamide into perovskite precursors is reported. The formation of chemical bond and hydrogen bond between N‐(2‐aminoethyl) acetamide and perovskite reduces the potential barrier in the phase‐transition process from an intermediate yellow phase to a final black phase, passivates the defects of the film, and leads to a high‐quality and phase‐pure α‐FAPbI3 perovskite. A self‐powered photodetector based on the as‐fabricated FAPbI3 film exhibits a maximum responsivity of 0.48 A W−1 at 700 nm with a peak external quantum efficiency of 95% at 440 nm. Moreover, the optimized device remains 83% of the initial performance after 576 h storage at ambient condition. This work provides a simple and feasible scheme for the preparation of high‐quality phase‐pure α‐FAPbI3 perovskite and associated devices. |
| Author | Cheng, Wenjie Tian, Wei He, Xiang Li, Liang Wang, Jian‐Gan |
| Author_xml | – sequence: 1 givenname: Wenjie surname: Cheng fullname: Cheng, Wenjie organization: Soochow University – sequence: 2 givenname: Xiang surname: He fullname: He, Xiang organization: Soochow University – sequence: 3 givenname: Jian‐Gan surname: Wang fullname: Wang, Jian‐Gan organization: Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU) – sequence: 4 givenname: Wei orcidid: 0000-0001-8941-6288 surname: Tian fullname: Tian, Wei email: wtian@suda.edu.cn organization: Soochow University – sequence: 5 givenname: Liang surname: Li fullname: Li, Liang email: lli@suda.edu.cn organization: Soochow University |
| BookMark | eNpdkcFu2zAMhoUhA5Zmu-4sYJfu4I6WIlk6Glm6BsjaAO3OhmxRqAvHyiylRW55hL7KXqQP0SepjA499ELyJz8SBP4TMul9j4R8zeEsB2A_jN2aMwaMgeJMfCDTXLA8m4MWEzIFzUWm5Vx9Iich3AGAliCn5HhJn4-PpywFs217j_H20H2nZYMxaYu0tLaN7T3SZW_qDgPd3JqACd_sB6Smt_Q6jgP69C81z8tNveLU-YEunWubFvtIr7Fz44J_wAFtOuCjtxixiX4In8lHZ7qAX_7nGflzvrxZXGTrq1-rRbnOdkxKkSleIwjkgmtXWCVNkrluBHPSKOkK4NKqwihXOCubVKimhqbGIlcq17XmM3L6enc3-L97DLHatqHBrjM9-n2oWMHEnGsQkNBv79A7vx_69F2ihFQSoBgp_Uo9tB0eqt3Qbs1wqHKoRjeq0Y3qzY2q_Pm7fFP8BQVAhvY |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202208325 |
| DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | ADMA202208325 |
| Genre | article |
| GrantInformation_xml | – fundername: Key University Science Research Project of Jiangsu Province funderid: 21KJA430005 – fundername: State Key Laboratory of Solidification Processing in NPU funderid: SKLSP202219 – fundername: National Natural Science Foundation of China funderid: 52025028; 52072254; 51872191 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 O8X 7X8 |
| ID | FETCH-LOGICAL-p2665-83be05e3539f7d86abe019c52f6a86f7036d87a8f7fd6c7a88cb0cbe718819b93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888652500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 13:26:56 EDT 2025 Sun Nov 30 05:01:02 EST 2025 Wed Jan 22 16:20:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 51 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p2665-83be05e3539f7d86abe019c52f6a86f7036d87a8f7fd6c7a88cb0cbe718819b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8941-6288 |
| PQID | 2756860070 |
| PQPubID | 2045203 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2725439050 proquest_journals_2756860070 wiley_primary_10_1002_adma_202208325_ADMA202208325 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2019; 7 2017; 7 2019; 9 2021; 6 2017; 8 2019; 3 2015; 5 2021; 20 2018; 140 2021; 2 2019; 31 2015; 347 2019; 10 2022; 91 2019; 366 2020; 11 2020; 32 2020; 10 2018; 20 2021; 13 2021; 35 2018; 9 2015; 25 2021; 31 2021; 33 2021; 11 2020; 31 2019; 63 2020; 30 2022; 5 2022; 7 2013; 118 2013; 52 2022; 34 2014; 16 2014; 14 2018; 52 2022; 32 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 20 start-page: 1337 year: 2021 publication-title: Nat. Mater. – volume: 3 start-page: 2179 year: 2019 publication-title: Joule – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 63 year: 2019 publication-title: Nano Energy – volume: 8 start-page: 2119 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 91 year: 2022 publication-title: Nano Energy – volume: 20 start-page: 6800 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 11 start-page: 1006 year: 2020 publication-title: Nat. Commun. – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 366 start-page: 1509 year: 2019 publication-title: Science – volume: 140 start-page: 6317 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 14 start-page: 3608 year: 2014 publication-title: Nano Lett. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 118 year: 2013 publication-title: J. Phys. Chem. C – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 5 start-page: 1487 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 10 start-page: 815 year: 2019 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 3511 year: 2021 publication-title: ACS Energy Lett. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 300 year: 2018 publication-title: Nano Energy – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 7 start-page: 1066 year: 2022 publication-title: ACS Energy Lett. – volume: 25 start-page: 1120 year: 2015 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1464 year: 2019 publication-title: Joule – volume: 5 start-page: 293 year: 2017 publication-title: Mater. Today Energy – volume: 9 start-page: 3021 year: 2018 publication-title: Nat. Commun. – volume: 35 year: 2021 publication-title: Energy Fuels |
| SSID | ssj0009606 |
| Score | 2.565656 |
| Snippet | Formamidinium–lead triiodide (FAPbI3) perovskite is considered as one of the most promising perovskite materials for high‐performance photodetectors because of... Formamidinium-lead triiodide (FAPbI3 ) perovskite is considered as one of the most promising perovskite materials for high-performance photodetectors because... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| StartPage | e2208325 |
| SubjectTerms | additive Carrier transport Chemical bonds Crystal defects Crystal structure FAPbI 3 Grain size Hydrogen bonds Materials science Perovskites phase transitions photodetectors Photometers Quantum efficiency Thermal stability |
| Title | N ‐(2‐aminoethyl) Acetamide Additive Enables Phase‐Pure and Stable α‐FAPbI3 for Efficient Self‐Powered Photodetectors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202208325 https://www.proquest.com/docview/2756860070 https://www.proquest.com/docview/2725439050 |
| Volume | 34 |
| WOSCitedRecordID | wos000888652500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbtswECUaJ4tkkTafIr8GDNBFshAik6ZILYXGRgu0htHWgHcCRY4QA65kWHLWOUKukovkEDlJhpTtONt0I5CaISFgZjRPIvmGkK-RbbPI5FkQAn6rdlgeBSo2YaCt4kpL4Lyd-WITst9Xo1E8WDvF3_BDrH64ucjw72sX4Dqrrl9JQ7X1vEGMIYhgYoNsMnRe0SKbN797w5-vxLuRr6_p1vuCOOqoJXFjyK7fzvAGYq4DVZ9peh___xk_kd0FyqRJ4xZ75AMU-2RnjXvwgNz36fP9wyXDi_43LkpAi02uaGKgxr4Fmljr9xXRrj9eVdHBLWY8VB_MZ0B1YSkCVRTQp0e82UsG2Q9OEQLTrmelwGRG_8AkdwNcJTawOEFZlxZqv1BQHZJhr_v32_dgUY4hmGIWF4HiGYQCuOBxLq2KNHbbsRFoX62i3DF5WSW1ymVuI4MNZbLQZIDZD2FHFvPPpFWUBRwRKtxmHNPOuZAIx0DqTofLMGZCI_xDrzkmZ0tbpIuYqlJHVK8cnT6KL1ZijAa3xKELKOdOxx3uj0OBOsxbJp02rB1pw8_MUmeTdGWTNLn5lax6J-8ZdEq2XbvZ43JGWvVsDl_Ilrmrx9XsnGzIkTpfeOULkuXmZA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTuswELW4gHRhweMC4o2RWFwWEakdJ84yglYgSlXxkNhFjj0RSJCgNmXNJ_Ar_AgfwZcwdkKBLWITxU9FmpnMsT0-Q8heaFos1Hnm-YBr1YDloSdj7XvKSC5VBJy3MpdsIur15PV13G-iCe1dmJofYrzhZi3D_a-tgdsN6YNP1lBlHHEQY4gimPhDpgLUJVTyqaPzzlX3k3k3dAk27YGfF4eB_GBu9NnB9xm-YcyvSNW5ms78L3zkAplrcCZNasVYJBNQ_COzX9gHl8hTj749Pf9n-FD3t0UJKLO7fZpoqLBsgCbGuMgi2nYXrIa0f4M-D7v3RwOgqjAUoSo20NcXrOwk_eyEUwTBtO14KdCd0Qu4y-0Am4sNDE5QVqWByh0VDJfJVad9eXjsNQkZvAf048KTPANfABc8ziMjQ4XFVqwFSljJMLdcXkZGSuZRbkKNL1Jnvs4A_R8CjyzmK2SyKAtYJVTYcBzdyrmIEJBBpIKAR37MhEIAiHqzRjY_hJE2VjVMLVW9tIT62Lw7bkZ7sIccqoByZPvY6_2xL7APc6JJH2rejrRmaGaplUk6lkmaHJ0l49L6TwbtkL_Hl2fdtHvSO90gM7a-jnjZJJPVYARbZFo_VrfDwXajnO_xlels |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELboFlXlwF-LChQwUg_lEDVrx4lzjNiNqCirCFhpb5Fjj9VKJVntZjn3EXgVXoSH4EkYO-lu94p6iWKPbUWamcyXePwNISexGbJY2yoIAb9VI2bjQKY6DJSRXKoEOB9WvthEMpnI2Swt-mxCdxam44dY_3BznuHf187BYW7s2YY1VBlPHMQYoggmdshu5CrJDMju6Gs-vdgw78a-wKbb8AvSOJK3zI0hO9teYQtj3kWqPtTkT-7hIZ-Sxz3OpFlnGM_IA6ifk0d32AcPyM2E_r35dcrwon5c1Q2gzq4_0ExDi20DNDPGZxbRsT9gtaTFJcY8HF6sFkBVbShCVRTQP7-xM8-K6pxTBMF07HkpMJzRb3Bt3QRXiw0MLtC0jYHWbxUsD8k0H3__-CnoCzIEc4zjIpC8glAAFzy1iZGxwuYw1QI1rGRsHZeXkYmSNrEm1ngjdRXqCjD-IfCoUv6CDOqmhiNChUvH0UPLRYKADBIVRTwJUyYUAkC0m5fk-FYZZe9Vy9JR1UtHqI_i92sx-oPb5FA1NCs3xh3vT0OBY5hXTTnveDvKjqGZlU4n5VonZTb6kq1br_5n0juyV4zy8uJ88vk12XfdXcLLMRm0ixW8IQ_1z_ZquXjb2-Y_ne_o5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N+-%282-aminoethyl%29+Acetamide+Additive+Enables+Phase-Pure+and+Stable+%CE%B1-FAPbI3+for+Efficient+Self-Powered+Photodetectors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cheng%2C+Wenjie&rft.au=He%2C+Xiang&rft.au=Wang%2C+Jian-Gan&rft.au=Tian%2C+Wei&rft.date=2022-12-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=51&rft.spage=e2208325&rft_id=info:doi/10.1002%2Fadma.202208325&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |