In Situ Atomic‐Scale Observation of Monolayer MoS2 Devices under High‐Voltage Biasing via Transmission Electron Microscopy

2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Small (Weinheim an der Bergstrasse, Germany) Ročník 18; číslo 7; s. e2106411 - n/a
Hlavní autori: Tseng, Yi‐Tang, Lu, Li‐Syuan, Shen, Fang‐Chun, Wang, Che‐Hung, Sung, Hsin‐Ya, Chang, Wen‐Hao, Wu, Wen‐Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim Wiley Subscription Services, Inc 01.02.2022
Predmet:
ISSN:1613-6810, 1613-6829, 1613-6829
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract 2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior and even electrical breakdown. In this study, the structural evolution of monolayer MoS2 with high bias is revealed via in situ transmission electron microscopy at the atomic scale. The biasing process is recorded and studied with the aid of aberration‐corrected scanning transmission electron microscopy. The effects of electron beam irradiation and biasing are also discussed through the combination of experiments and theory. It is found that the Mo nanoclusters result from disintegration of MoS2 and sulfur depletion, which are induced by Joule heating. The thermal stress can also damage the MoS2 layer and form long cracks in both in situ and ex situ biasing cases. Investigation of the results obtained with different applied voltages helps to further verify the mechanism of evolution and provide a comprehensive study of the function of biasing. The high‐voltage biasing of monolayer MoS2 devices is demonstrated through in situ TEM and aberration‐corrected STEM to explore the mechanism of the material failure. During in situ TEM biasing, the MoS2 device is damaged by knock‐on damage, and the atomic migration induced by Joule heating. Also, long cracks formed by thermal stress are discussed in this research.
AbstractList 2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior and even electrical breakdown. In this study, the structural evolution of monolayer MoS2 with high bias is revealed via in situ transmission electron microscopy at the atomic scale. The biasing process is recorded and studied with the aid of aberration‐corrected scanning transmission electron microscopy. The effects of electron beam irradiation and biasing are also discussed through the combination of experiments and theory. It is found that the Mo nanoclusters result from disintegration of MoS2 and sulfur depletion, which are induced by Joule heating. The thermal stress can also damage the MoS2 layer and form long cracks in both in situ and ex situ biasing cases. Investigation of the results obtained with different applied voltages helps to further verify the mechanism of evolution and provide a comprehensive study of the function of biasing. The high‐voltage biasing of monolayer MoS2 devices is demonstrated through in situ TEM and aberration‐corrected STEM to explore the mechanism of the material failure. During in situ TEM biasing, the MoS2 device is damaged by knock‐on damage, and the atomic migration induced by Joule heating. Also, long cracks formed by thermal stress are discussed in this research.
2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior and even electrical breakdown. In this study, the structural evolution of monolayer MoS2 with high bias is revealed via in situ transmission electron microscopy at the atomic scale. The biasing process is recorded and studied with the aid of aberration‐corrected scanning transmission electron microscopy. The effects of electron beam irradiation and biasing are also discussed through the combination of experiments and theory. It is found that the Mo nanoclusters result from disintegration of MoS2 and sulfur depletion, which are induced by Joule heating. The thermal stress can also damage the MoS2 layer and form long cracks in both in situ and ex situ biasing cases. Investigation of the results obtained with different applied voltages helps to further verify the mechanism of evolution and provide a comprehensive study of the function of biasing.
2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior and even electrical breakdown. In this study, the structural evolution of monolayer MoS2 with high bias is revealed via in situ transmission electron microscopy at the atomic scale. The biasing process is recorded and studied with the aid of aberration-corrected scanning transmission electron microscopy. The effects of electron beam irradiation and biasing are also discussed through the combination of experiments and theory. It is found that the Mo nanoclusters result from disintegration of MoS2 and sulfur depletion, which are induced by Joule heating. The thermal stress can also damage the MoS2 layer and form long cracks in both in situ and ex situ biasing cases. Investigation of the results obtained with different applied voltages helps to further verify the mechanism of evolution and provide a comprehensive study of the function of biasing.2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior and even electrical breakdown. In this study, the structural evolution of monolayer MoS2 with high bias is revealed via in situ transmission electron microscopy at the atomic scale. The biasing process is recorded and studied with the aid of aberration-corrected scanning transmission electron microscopy. The effects of electron beam irradiation and biasing are also discussed through the combination of experiments and theory. It is found that the Mo nanoclusters result from disintegration of MoS2 and sulfur depletion, which are induced by Joule heating. The thermal stress can also damage the MoS2 layer and form long cracks in both in situ and ex situ biasing cases. Investigation of the results obtained with different applied voltages helps to further verify the mechanism of evolution and provide a comprehensive study of the function of biasing.
Author Tseng, Yi‐Tang
Wang, Che‐Hung
Shen, Fang‐Chun
Lu, Li‐Syuan
Wu, Wen‐Wei
Chang, Wen‐Hao
Sung, Hsin‐Ya
Author_xml – sequence: 1
  givenname: Yi‐Tang
  surname: Tseng
  fullname: Tseng, Yi‐Tang
  organization: National Yang Ming Chiao Tung University
– sequence: 2
  givenname: Li‐Syuan
  surname: Lu
  fullname: Lu, Li‐Syuan
  organization: National Yang Ming Chiao Tung University
– sequence: 3
  givenname: Fang‐Chun
  surname: Shen
  fullname: Shen, Fang‐Chun
  organization: National Yang Ming Chiao Tung University
– sequence: 4
  givenname: Che‐Hung
  surname: Wang
  fullname: Wang, Che‐Hung
  organization: National Yang Ming Chiao Tung University
– sequence: 5
  givenname: Hsin‐Ya
  surname: Sung
  fullname: Sung, Hsin‐Ya
  organization: National Yang Ming Chiao Tung University
– sequence: 6
  givenname: Wen‐Hao
  surname: Chang
  fullname: Chang, Wen‐Hao
  organization: Academia Sinica
– sequence: 7
  givenname: Wen‐Wei
  orcidid: 0000-0002-8388-8417
  surname: Wu
  fullname: Wu, Wen‐Wei
  email: wwwu@mail.nctu.edu.tw
  organization: National Yang Ming Chiao Tung University
BookMark eNpdkU9PGzEQxa0KpELotWdLXLiE2uNd7_rI34KUiEOA68rrnQ1Gjh3s3aBcUD9CP2M_SR1R5dDTvBn95ulJ75gc-OCRkO-cnXPG4EdaOXcODDiTBedfyBGXXExlDepgrzn7So5TemVMcCiqI_Jx7-nCDiO9GMLKmj-_fi-Mdkgf2oRxowcbPA09nQcfnN5izGoB9Bo31mCio-_y6c4uX_Ljc3CDXiK9tDpZv6Qbq-lj1D6tbEo7nxuHZohZzK2JIZmw3p6Qw167hN_-zQl5ur15vLqbzh5-3l9dzKZrkJJPe4EFY0xJ00sAUEyXouuwUl1tikoKU3aIoi0qDdDWfVurslVGVRUorOpCiwk5-_Rdx_A2YhqaHMqgc9pjGFMDktcgSsGLjJ7-h76GMfqcLlOgQLIygxOiPql363DbrKNd6bhtOGt2XTS7Lpp9F81iPpvtN_EXKwyEDQ
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202106411
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202106411
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology
  funderid: MOST 107‐2119‐M‐009‐019; MOST 108‐2221‐E‐009‐036‐MY3; MOST 109‐2628‐E‐009‐008‐MY3; MOST 110‐2731‐M‐009‐001,; MOST 110‐2119‐M‐007‐002‐MBK
– fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST‐109‐2634‐F‐009‐029; MOST‐110‐2634‐F‐009‐027
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-p2661-f3e400096cf622290a53dde79d8c4763c5dee3b47a22b8fb895b9c97729e784a3
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739900700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Thu Oct 02 10:41:55 EDT 2025
Fri Jul 25 12:22:34 EDT 2025
Wed Jan 22 16:27:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2661-f3e400096cf622290a53dde79d8c4763c5dee3b47a22b8fb895b9c97729e784a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8388-8417
PQID 2629260535
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2618235314
proquest_journals_2629260535
wiley_primary_10_1002_smll_202106411_SMLL202106411
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2015; 15
2017; 8
2019; 3
2013; 4
2019; 6
2019; 11
2019; 13
2015; 10
2016; 10
2020; 16
2020; 14
2017; 29
2020; 124
2020; 32
2013; 7
2008; 321
2013; 8
2015; 9
2011; 6
2018; 48
2012; 109
2016; 6
2018; 9
2016; 7
2021; 31
2021; 12
2020; 30
2013; 13
2017; 17
2017; 11
2017; 13
2018; 554
2019; 27
2012; 6
2018; 12
2012; 24
2014; 8
2014; 6
2016; 8
2016; 9
2018; 14
2014; 146
References_xml – volume: 48
  start-page: 560
  year: 2018
  publication-title: Nano Energy
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 9
  year: 2019
  publication-title: npj 2D Mater. Appl.
– volume: 27
  start-page: 8
  year: 2019
  publication-title: Mater. Today
– volume: 14
  start-page: 1569
  year: 2020
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 17
  start-page: 5502
  year: 2017
  publication-title: Nano Lett.
– volume: 4
  start-page: 1776
  year: 2013
  publication-title: Nat. Commun.
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 14
  year: 2018
  publication-title: Small
– volume: 8
  start-page: 497
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 7109
  year: 2018
  publication-title: ACS Nano
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 10
  start-page: 403
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 24
  start-page: 2320
  year: 2012
  publication-title: Adv. Mater.
– volume: 12
  start-page: 693
  year: 2021
  publication-title: Nat. Commun.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 8
  start-page: 3992
  year: 2014
  publication-title: ACS Nano
– volume: 12
  start-page: 7721
  year: 2018
  publication-title: ACS Nano
– volume: 6
  start-page: 147
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 5214
  year: 2015
  publication-title: Nano Lett.
– volume: 11
  start-page: 9435
  year: 2017
  publication-title: ACS Nano
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  year: 2019
  publication-title: 2D Mater.
– volume: 13
  start-page: 3196
  year: 2019
  publication-title: ACS Nano
– volume: 13
  start-page: 9638
  year: 2019
  publication-title: ACS Nano
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 321
  start-page: 1066
  year: 2008
  publication-title: Science
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 9831
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 7931
  year: 2013
  publication-title: ACS Nano
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 3626
  year: 2013
  publication-title: Nano Lett.
– volume: 9
  start-page: 2051
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 13
  start-page: 7117
  year: 2019
  publication-title: ACS Nano
– volume: 9
  start-page: 3663
  year: 2016
  publication-title: Nano Res.
– volume: 554
  start-page: 500
  year: 2018
  publication-title: Nature
– volume: 6
  year: 2012
  publication-title: ACS Nano
– volume: 13
  year: 2017
  publication-title: Small
– volume: 146
  start-page: 33
  year: 2014
  publication-title: Ultramicroscopy
SSID ssj0031247
Score 2.454294
Snippet 2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2106411
SubjectTerms 2D materials
Bias
Depletion
Disintegration
Electrical faults
Electron beams
Electron irradiation
Evolution
high‐resolution TEM/STEM
in situ biasing
Joule heating
Materials failure
Molybdenum disulfide
monolayer MoS 2
Monolayers
Nanoclusters
Nanotechnology
Ohmic dissipation
Optoelectronics
Resistance heating
Scanning transmission electron microscopy
Thermal stress
Transmission electron microscopy
Two dimensional materials
Title In Situ Atomic‐Scale Observation of Monolayer MoS2 Devices under High‐Voltage Biasing via Transmission Electron Microscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202106411
https://www.proquest.com/docview/2629260535
https://www.proquest.com/docview/2618235314
Volume 18
WOSCitedRecordID wos000739900700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60etCDb7E-ygpeQ-tmk2yO1VoU6gOr0lvYbDdQqGlp04IX8Sf4G_0lzmzTWK96S0h2SZj37Mw3AGfdc6PRre5iWIJkEMLTTmhc7mjlJ1KZUAljp5a0grs72emEDwtd_DN8iCLhRpJh9TUJuIrH1R_Q0PFrn44OMGTxBTX3rnBkXq8EK43H5nNrro1dtF92wAqaLYewt-bAjTVe_b3DLxdz0VG1lqa5-f9v3IKN3Mtk9RlbbMOSSXdgfQF7cBfeb1LW7mUTVs-oMfnr47ON5DLsPi7ytGyQMJR5DH7RL8erNmcNYzULo9azEaMiEVz4MuhnqJbYRU9R5oFNe4pZG4g8RMk4dpXP2mG3VP5HjTBve_DcvHq6vHbyYQzOkGy4k7hG2IBHJz7NAK8pz0XVGIRdqQUqKe11jXFjESjOY5nEMvTiUIfkvJtACuXuQykdpOYAGLoovqoZfo70EBhuSRkTrnuQ6AQ1gheU4XhOiSiXqHHEfR5S7OV6ZTgtHuN_0AGHSs1gQu9gtOTiHqIM3NIlGs4wO6IZOjOPiCJRQZGofdtqFXeHf1l0BGucOiJsIfcxlLLRxJzAqp5mvfGoAstBR1ZynvwGbNvkSg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kCurBt1ifK3gNbTeb11FtS8W0irHibdlsN1DQVNpU8CL-BH-jv8SZTRrrVbwlJLskzHt25htCzgYNrcCtHkBYAmTg3FFWoG1mKekmvtSB5NpMLQm9Xs9_fAxui2pC7IXJ8SHKhBtKhtHXKOCYkK79oIZOnp_w7ABiFpdjd-8iB14CJl9s3rX74Uwd22DAzIQVsFsWgm_NkBvrrPZ7h18-5rynakxNe_0fPnKDrBV-Jj3PGWOTLOh0i6zOoQ9uk_erlEbDbErPM2xN_vr4jIBgmt7EZaaWjhIKUg_hL3jmcBUx2tRGt1BsPhtTLBOBhQ-jpwwUE70YSsw90NehpMYKAhdhOo62imk7tIsFgNgK87ZD-u3W_WXHKsYxWC9oxa3E1tyEPCpxcQp4XTo2KEcvGPiKg5pSzkBrO-aeZCz2k9gPnDhQAbrv2vO5tHdJJR2leo9QcFJcWdesAQThEHD5fozI7l6iEtAJjlclhzNSiEKmJoK5LMDoy3aq5LR8DP-BRxwy1aMpvgPxkg178CphhjDiJUftEDk-MxNIEVFSRETdMCzv9v-y6IQsd-67oQivetcHZIVhf4Qp6z4klWw81UdkSb1mw8n4uGDNb72h51I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kiujBt1ifK3gN1s3mdVRrUUxrsSrewmazgYKmpU0FL-JP8Df6S5zZprG9ireEZJeEec_OfANwkpxphW51gmEJkkEIR1mBtrmlpJv6UgdSaDO1JPRaLf_5OWgX1YTUCzPGhygTbiQZRl-TgOt-kp7-ooYOX1_o7ABjFldQd--8oEkyFZiv3zcew4k6ttGAmQkraLcsAt-aIDfW-OnsDjM-5rSnakxNY_UfPnINVgo_k52PGWMd5nS2ActT6IOb8HGTsU43H7HznFqTvz-_Okgwze7iMlPLeilDqcfwFz1zvOpwVtdGtzBqPhswKhPBhU-9lxwVE7voSso9sLeuZMYKIhdROo5dFdN2WJMKAKkV5n0LHhtXD5fXVjGOweqTFbdSWwsT8qjUpSngNenYqBy9IPGVQDWlnERrOxae5Dz209gPnDhQAbnv2vOFtLehkvUyvQMMnRRX1jQ_Q4IIDLh8PyZkdy9VKeoEx6vC_oQUUSFTw4i7PKDoy3aqcFw-xv-gIw6Z6d6I3sF4ycY9RBW4IUzUH6N2RGN8Zh4RRaKSIlGnGYbl3e5fFh3BYrveiMKb1u0eLHFqjzBV3ftQyQcjfQAL6i3vDgeHBWf-AGxm5s0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Atomic%E2%80%90Scale+Observation+of+Monolayer+MoS2+Devices+under+High%E2%80%90Voltage+Biasing+via+Transmission+Electron+Microscopy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Tseng%2C+Yi%E2%80%90Tang&rft.au=Lu%2C+Li%E2%80%90Syuan&rft.au=Shen%2C+Fang%E2%80%90Chun&rft.au=Wang%2C+Che%E2%80%90Hung&rft.date=2022-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202106411&rft.externalDBID=10.1002%252Fsmll.202106411&rft.externalDocID=SMLL202106411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon