Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current

Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 111; H. 22; S. E2281
Hauptverfasser: Dickson, Eamonn J, Jensen, Jill B, Hille, Bertil
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 03.06.2014
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity.
AbstractList Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity.
Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity.Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity.
Author Hille, Bertil
Jensen, Jill B
Dickson, Eamonn J
Author_xml – sequence: 1
  givenname: Eamonn J
  surname: Dickson
  fullname: Dickson, Eamonn J
  organization: Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
– sequence: 2
  givenname: Jill B
  surname: Jensen
  fullname: Jensen, Jill B
  organization: Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
– sequence: 3
  givenname: Bertil
  surname: Hille
  fullname: Hille, Bertil
  email: hille@u.washington.edu
  organization: Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195 hille@u.washington.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24843134$$D View this record in MEDLINE/PubMed
BookMark eNplkM9Lw0AQhRep2B969iZ7bMG0OzubNDlK0VosWkHPYbLZaiTZjdnk4M0_3VYrCF7mvcPHx2OGrGedNYydg5iCmOOstuSnoMQcEAHgiA1AJBBEKhG9P73Pht6_CSGSMBYnrC9VrBBQDdjn0pUvBSeb87okXxGvTJU1ZA2vnSs9d1u-WY3VZMO1s21TZF1reOv-0XvoMpxs5LerosK2xpLVZm-4W9w_yhnywlmuX8laU3LdNY2x7Sk73lLpzdkhR-z55vppcRusH5arxdU6qCUmbRATKjVHFSHEWRRqEKRzlDIzGpI8Jkm7I2AeU4JGEeSZUHGEiDICbVDLERv_eOvGvXfGt2lVeG3KcjfedT6FEKMoBimTHXpxQLusMnlaN0VFzUf6-zX5BRQJbpg
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1407133111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 24843134
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R37NS008174
– fundername: NINDS NIH HHS
  grantid: R37 NS008174
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ADXHL
ID FETCH-LOGICAL-p239t-8a3447346318b65c10acd322bec19d8a2ad8a0178a93e4a1db0486333261ce3c2
IEDL.DBID 7X8
ISSN 1091-6490
IngestDate Thu Sep 04 17:38:50 EDT 2025
Wed Feb 19 01:51:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords wortmannin
pleckstrin homology domain
phosphoinositides
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p239t-8a3447346318b65c10acd322bec19d8a2ad8a0178a93e4a1db0486333261ce3c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24843134
PQID 1536681229
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1536681229
pubmed_primary_24843134
PublicationCentury 2000
PublicationDate 2014-06-03
PublicationDateYYYYMMDD 2014-06-03
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
References 24209621 - Cell. 2013 Nov 7;155(4):830-43
15800195 - J Neurosci. 2005 Mar 30;25(13):3400-13
8662589 - J Biol Chem. 1996 May 17;271(20):12088-94
18299350 - J Cell Biol. 2008 Feb 25;180(4):803-12
21795401 - Mol Biol Cell. 2011 Sep;22(18):3498-507
23899561 - Physiol Rev. 2013 Jul;93(3):1019-137
18573078 - Annu Rev Biophys. 2008;37:175-95
7777504 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5317-21
10224048 - J Biol Chem. 1999 May 7;274(19):12990-5
24415756 - J Biol Chem. 2014 Feb 28;289(9):6120-32
20389282 - EMBO J. 2010 May 5;29(9):1489-98
11244087 - J Biol Chem. 2001 Mar 16;276(11):7705-8
12914695 - Cell. 2003 Aug 8;114(3):299-310
9148941 - J Biol Chem. 1997 May 16;272(20):13236-41
23213479 - Biol Open. 2012 Sep 15;1(9):857-62
23630338 - J Gen Physiol. 2013 May;141(5):537-55
17927563 - Biochem J. 2008 Jan 15;409(2):501-9
22169478 - Sci Signal. 2011;4(203):ra87
15634669 - J Biol Chem. 2005 Mar 18;280(11):10501-8
23229899 - J Cell Biol. 2012 Dec 10;199(6):1003-16
18077555 - Mol Biol Cell. 2008 Feb;19(2):711-21
19508231 - Biochem J. 2009 Aug 15;422(1):23-35
17908202 - Traffic. 2007 Nov;8(11):1554-67
15271978 - J Biol Chem. 2004 Oct 22;279(43):44683-9
15023338 - Mol Cell. 2004 Mar 12;13(5):677-88
12859901 - Cell. 2003 Jul 11;114(1):99-111
12771127 - J Cell Biol. 2003 May 26;161(4):779-91
14502432 - J Membr Biol. 2003 Jul 15;194(2):77-89
15635101 - Mol Biol Cell. 2005 Mar;16(3):1282-95
12670425 - Neuron. 2003 Mar 27;37(6):963-75
9478953 - J Biol Chem. 1998 Feb 27;273(9):5037-46
23630337 - J Gen Physiol. 2013 May;141(5):521-35
8639510 - Biochemistry. 1996 Mar 19;35(11):3587-94
23608234 - Prog Lipid Res. 2013 Jul;52(3):294-304
15861130 - EMBO J. 2005 May 4;24(9):1664-73
16443754 - J Cell Sci. 2006 Feb 1;119(Pt 3):571-81
22791894 - Development. 2012 Aug;139(16):3040-50
21295699 - Cell. 2011 Feb 4;144(3):389-401
11526106 - J Biol Chem. 2001 Oct 26;276(43):40183-9
12650639 - Biochem J. 2003 Jul 1;373(Pt 1):57-63
16990515 - Science. 2006 Dec 1;314(5804):1454-7
11923287 - J Biol Chem. 2002 May 31;277(22):20041-50
19470488 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9256-61
20100891 - J Gen Physiol. 2010 Feb;135(2):99-114
15576365 - J Biol Chem. 2005 Feb 18;280(7):6047-54
21540350 - J Physiol. 2011 Jul 1;589(Pt 13):3149-62
22452743 - Biochemistry. 2012 Apr 17;51(15):3170-7
19047057 - J Biol Chem. 2009 Jan 23;284(4):2106-13
17035995 - Nature. 2006 Oct 12;443(7112):651-7
19001665 - J Lipid Res. 2009 Apr;50 Suppl:S249-54
21330372 - J Biol Chem. 2011 Apr 8;286(14):12775-84
10559940 - Nat Cell Biol. 1999 Sep;1(5):280-7
20670831 - Neuron. 2010 Jul 29;67(2):224-38
24183667 - Cell Rep. 2013 Nov 14;5(3):813-25
11950893 - J Cell Sci. 2002 Apr 15;115(Pt 8):1769-75
15107860 - Nat Cell Biol. 2004 May;6(5):393-404
21562284 - J Neurosci. 2011 May 11;31(19):7199-211
23602387 - Dev Cell. 2013 Apr 29;25(2):144-55
21051544 - J Biol Chem. 2011 Jan 7;286(1):830-41
22722250 - Science. 2012 Aug 10;337(6095):727-30
12467583 - Neuron. 2002 Dec 5;36(5):787-90
11454456 - Curr Opin Cell Biol. 2001 Aug;13(4):485-92
21704602 - Anal Biochem. 2011 Oct 1;417(1):97-102
20404150 - Proc Natl Acad Sci U S A. 2010 May 4;107(18):8225-30
22075145 - Dev Cell. 2011 Nov 15;21(5):813-24
23237950 - Dev Cell. 2012 Dec 11;23(6):1129-40
9722606 - J Cell Biol. 1998 Aug 24;142(4):923-36
12165472 - Neuron. 2002 Aug 1;35(3):507-20
16793271 - Trends Cell Biol. 2006 Jul;16(7):351-61
23083708 - Biophys J. 2012 Oct 17;103(8):1657-65
3548823 - Biochemistry. 1987 Jan 27;26(2):612-22
References_xml – reference: 9478953 - J Biol Chem. 1998 Feb 27;273(9):5037-46
– reference: 21795401 - Mol Biol Cell. 2011 Sep;22(18):3498-507
– reference: 22791894 - Development. 2012 Aug;139(16):3040-50
– reference: 12650639 - Biochem J. 2003 Jul 1;373(Pt 1):57-63
– reference: 8639510 - Biochemistry. 1996 Mar 19;35(11):3587-94
– reference: 17035995 - Nature. 2006 Oct 12;443(7112):651-7
– reference: 15861130 - EMBO J. 2005 May 4;24(9):1664-73
– reference: 15023338 - Mol Cell. 2004 Mar 12;13(5):677-88
– reference: 15271978 - J Biol Chem. 2004 Oct 22;279(43):44683-9
– reference: 3548823 - Biochemistry. 1987 Jan 27;26(2):612-22
– reference: 9722606 - J Cell Biol. 1998 Aug 24;142(4):923-36
– reference: 12859901 - Cell. 2003 Jul 11;114(1):99-111
– reference: 24183667 - Cell Rep. 2013 Nov 14;5(3):813-25
– reference: 23630337 - J Gen Physiol. 2013 May;141(5):521-35
– reference: 18077555 - Mol Biol Cell. 2008 Feb;19(2):711-21
– reference: 21562284 - J Neurosci. 2011 May 11;31(19):7199-211
– reference: 16990515 - Science. 2006 Dec 1;314(5804):1454-7
– reference: 19001665 - J Lipid Res. 2009 Apr;50 Suppl:S249-54
– reference: 18299350 - J Cell Biol. 2008 Feb 25;180(4):803-12
– reference: 21540350 - J Physiol. 2011 Jul 1;589(Pt 13):3149-62
– reference: 15634669 - J Biol Chem. 2005 Mar 18;280(11):10501-8
– reference: 16443754 - J Cell Sci. 2006 Feb 1;119(Pt 3):571-81
– reference: 23237950 - Dev Cell. 2012 Dec 11;23(6):1129-40
– reference: 22722250 - Science. 2012 Aug 10;337(6095):727-30
– reference: 8662589 - J Biol Chem. 1996 May 17;271(20):12088-94
– reference: 12670425 - Neuron. 2003 Mar 27;37(6):963-75
– reference: 23213479 - Biol Open. 2012 Sep 15;1(9):857-62
– reference: 23899561 - Physiol Rev. 2013 Jul;93(3):1019-137
– reference: 19508231 - Biochem J. 2009 Aug 15;422(1):23-35
– reference: 15576365 - J Biol Chem. 2005 Feb 18;280(7):6047-54
– reference: 11950893 - J Cell Sci. 2002 Apr 15;115(Pt 8):1769-75
– reference: 11454456 - Curr Opin Cell Biol. 2001 Aug;13(4):485-92
– reference: 12771127 - J Cell Biol. 2003 May 26;161(4):779-91
– reference: 19047057 - J Biol Chem. 2009 Jan 23;284(4):2106-13
– reference: 12914695 - Cell. 2003 Aug 8;114(3):299-310
– reference: 21704602 - Anal Biochem. 2011 Oct 1;417(1):97-102
– reference: 23229899 - J Cell Biol. 2012 Dec 10;199(6):1003-16
– reference: 10559940 - Nat Cell Biol. 1999 Sep;1(5):280-7
– reference: 20404150 - Proc Natl Acad Sci U S A. 2010 May 4;107(18):8225-30
– reference: 23608234 - Prog Lipid Res. 2013 Jul;52(3):294-304
– reference: 16793271 - Trends Cell Biol. 2006 Jul;16(7):351-61
– reference: 20389282 - EMBO J. 2010 May 5;29(9):1489-98
– reference: 7777504 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5317-21
– reference: 22075145 - Dev Cell. 2011 Nov 15;21(5):813-24
– reference: 12165472 - Neuron. 2002 Aug 1;35(3):507-20
– reference: 24209621 - Cell. 2013 Nov 7;155(4):830-43
– reference: 11923287 - J Biol Chem. 2002 May 31;277(22):20041-50
– reference: 22452743 - Biochemistry. 2012 Apr 17;51(15):3170-7
– reference: 9148941 - J Biol Chem. 1997 May 16;272(20):13236-41
– reference: 15800195 - J Neurosci. 2005 Mar 30;25(13):3400-13
– reference: 10224048 - J Biol Chem. 1999 May 7;274(19):12990-5
– reference: 15635101 - Mol Biol Cell. 2005 Mar;16(3):1282-95
– reference: 11526106 - J Biol Chem. 2001 Oct 26;276(43):40183-9
– reference: 21295699 - Cell. 2011 Feb 4;144(3):389-401
– reference: 15107860 - Nat Cell Biol. 2004 May;6(5):393-404
– reference: 20670831 - Neuron. 2010 Jul 29;67(2):224-38
– reference: 23602387 - Dev Cell. 2013 Apr 29;25(2):144-55
– reference: 11244087 - J Biol Chem. 2001 Mar 16;276(11):7705-8
– reference: 20100891 - J Gen Physiol. 2010 Feb;135(2):99-114
– reference: 12467583 - Neuron. 2002 Dec 5;36(5):787-90
– reference: 17908202 - Traffic. 2007 Nov;8(11):1554-67
– reference: 22169478 - Sci Signal. 2011;4(203):ra87
– reference: 23083708 - Biophys J. 2012 Oct 17;103(8):1657-65
– reference: 18573078 - Annu Rev Biophys. 2008;37:175-95
– reference: 17927563 - Biochem J. 2008 Jan 15;409(2):501-9
– reference: 14502432 - J Membr Biol. 2003 Jul 15;194(2):77-89
– reference: 21330372 - J Biol Chem. 2011 Apr 8;286(14):12775-84
– reference: 23630338 - J Gen Physiol. 2013 May;141(5):537-55
– reference: 24415756 - J Biol Chem. 2014 Feb 28;289(9):6120-32
– reference: 19470488 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9256-61
– reference: 21051544 - J Biol Chem. 2011 Jan 7;286(1):830-41
SSID ssj0009580
Score 2.424724
Snippet Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E2281
SubjectTerms 1-Phosphatidylinositol 4-Kinase - metabolism
Androstadienes - pharmacology
Cell Membrane - metabolism
Cells, Cultured
Golgi Apparatus - metabolism
Humans
KCNQ2 Potassium Channel - physiology
KCNQ3 Potassium Channel - physiology
Kidney - cytology
Membrane Potentials - physiology
Myosin Type II - metabolism
Phosphatidylinositol 4,5-Diphosphate - metabolism
Phosphatidylinositols - metabolism
Protein Kinase Inhibitors - pharmacology
Title Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current
URI https://www.ncbi.nlm.nih.gov/pubmed/24843134
https://www.proquest.com/docview/1536681229
Volume 111
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qPHhR5-f8IoKHDSxrPtYmJ5HhVMRSQWG3kjapDLa22unZP92XtkNBBMFLTmlok997-b3k9fcQOvM0bHpcUkeKGAIUapSjfMEdpmJDNfOMiutiE34QiPFYhs2BW9mkVS58YuWodZ7YM_I-WKZntbKovCheHFs1yt6uNiU0llGLAZWxqPbH4pvorqjVCCRxPC7dhbSPz_pFpkrwElWMRgj5nV9W-8xo479vuInWG4aJL2tItNGSybZQu7HhEncboeneNvq4zqfPE6wyjQsg0TOFZ2YG0XNmsK28VeI8xeFtl_dCXGW029JYBs_zH71tp_NBL6TVWDNlNSiskIexI9wNgwfaZxgAgO1vxpmZ4qRWhdpBT6Orx-GN01RkcArK5NwRygoEMu6BJ4i9QUJclWhwCQAEIrVQVEEDNi6UZIYromOr6McYcESSGJbQXbSS5ZnZR1gaQ4mSA9-4Kfc1FW4sZSyZF2sxcFnaQaeLWY4A8fYaAz4ofyujr3nuoL16qaKiluaIKBfAiBg_-MPTh2gN2A-v8r7YEWqlYO_mGK0m7_NJ-XpSQQnaILz_BArY0Ow
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Golgi+and+plasma+membrane+pools+of+PI%284%29P+contribute+to+plasma+membrane+PI%284%2C5%29P2+and+maintenance+of+KCNQ2%2F3+ion+channel+current&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Dickson%2C+Eamonn+J&rft.au=Jensen%2C+Jill+B&rft.au=Hille%2C+Bertil&rft.date=2014-06-03&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=22&rft.spage=E2281&rft_id=info:doi/10.1073%2Fpnas.1407133111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon