Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current
Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 doma...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 111; H. 22; S. E2281 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
03.06.2014
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity. |
|---|---|
| AbstractList | Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity. Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity.Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity. |
| Author | Hille, Bertil Jensen, Jill B Dickson, Eamonn J |
| Author_xml | – sequence: 1 givenname: Eamonn J surname: Dickson fullname: Dickson, Eamonn J organization: Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195 – sequence: 2 givenname: Jill B surname: Jensen fullname: Jensen, Jill B organization: Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195 – sequence: 3 givenname: Bertil surname: Hille fullname: Hille, Bertil email: hille@u.washington.edu organization: Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195 hille@u.washington.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24843134$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkM9Lw0AQhRep2B969iZ7bMG0OzubNDlK0VosWkHPYbLZaiTZjdnk4M0_3VYrCF7mvcPHx2OGrGedNYydg5iCmOOstuSnoMQcEAHgiA1AJBBEKhG9P73Pht6_CSGSMBYnrC9VrBBQDdjn0pUvBSeb87okXxGvTJU1ZA2vnSs9d1u-WY3VZMO1s21TZF1reOv-0XvoMpxs5LerosK2xpLVZm-4W9w_yhnywlmuX8laU3LdNY2x7Sk73lLpzdkhR-z55vppcRusH5arxdU6qCUmbRATKjVHFSHEWRRqEKRzlDIzGpI8Jkm7I2AeU4JGEeSZUHGEiDICbVDLERv_eOvGvXfGt2lVeG3KcjfedT6FEKMoBimTHXpxQLusMnlaN0VFzUf6-zX5BRQJbpg |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1407133111 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 24843134 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R37NS008174 – fundername: NINDS NIH HHS grantid: R37 NS008174 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ ADXHL |
| ID | FETCH-LOGICAL-p239t-8a3447346318b65c10acd322bec19d8a2ad8a0178a93e4a1db0486333261ce3c2 |
| IEDL.DBID | 7X8 |
| ISSN | 1091-6490 |
| IngestDate | Thu Sep 04 17:38:50 EDT 2025 Wed Feb 19 01:51:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | wortmannin pleckstrin homology domain phosphoinositides |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p239t-8a3447346318b65c10acd322bec19d8a2ad8a0178a93e4a1db0486333261ce3c2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24843134 |
| PQID | 1536681229 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1536681229 pubmed_primary_24843134 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-03 |
| PublicationDateYYYYMMDD | 2014-06-03 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2014 |
| References | 24209621 - Cell. 2013 Nov 7;155(4):830-43 15800195 - J Neurosci. 2005 Mar 30;25(13):3400-13 8662589 - J Biol Chem. 1996 May 17;271(20):12088-94 18299350 - J Cell Biol. 2008 Feb 25;180(4):803-12 21795401 - Mol Biol Cell. 2011 Sep;22(18):3498-507 23899561 - Physiol Rev. 2013 Jul;93(3):1019-137 18573078 - Annu Rev Biophys. 2008;37:175-95 7777504 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5317-21 10224048 - J Biol Chem. 1999 May 7;274(19):12990-5 24415756 - J Biol Chem. 2014 Feb 28;289(9):6120-32 20389282 - EMBO J. 2010 May 5;29(9):1489-98 11244087 - J Biol Chem. 2001 Mar 16;276(11):7705-8 12914695 - Cell. 2003 Aug 8;114(3):299-310 9148941 - J Biol Chem. 1997 May 16;272(20):13236-41 23213479 - Biol Open. 2012 Sep 15;1(9):857-62 23630338 - J Gen Physiol. 2013 May;141(5):537-55 17927563 - Biochem J. 2008 Jan 15;409(2):501-9 22169478 - Sci Signal. 2011;4(203):ra87 15634669 - J Biol Chem. 2005 Mar 18;280(11):10501-8 23229899 - J Cell Biol. 2012 Dec 10;199(6):1003-16 18077555 - Mol Biol Cell. 2008 Feb;19(2):711-21 19508231 - Biochem J. 2009 Aug 15;422(1):23-35 17908202 - Traffic. 2007 Nov;8(11):1554-67 15271978 - J Biol Chem. 2004 Oct 22;279(43):44683-9 15023338 - Mol Cell. 2004 Mar 12;13(5):677-88 12859901 - Cell. 2003 Jul 11;114(1):99-111 12771127 - J Cell Biol. 2003 May 26;161(4):779-91 14502432 - J Membr Biol. 2003 Jul 15;194(2):77-89 15635101 - Mol Biol Cell. 2005 Mar;16(3):1282-95 12670425 - Neuron. 2003 Mar 27;37(6):963-75 9478953 - J Biol Chem. 1998 Feb 27;273(9):5037-46 23630337 - J Gen Physiol. 2013 May;141(5):521-35 8639510 - Biochemistry. 1996 Mar 19;35(11):3587-94 23608234 - Prog Lipid Res. 2013 Jul;52(3):294-304 15861130 - EMBO J. 2005 May 4;24(9):1664-73 16443754 - J Cell Sci. 2006 Feb 1;119(Pt 3):571-81 22791894 - Development. 2012 Aug;139(16):3040-50 21295699 - Cell. 2011 Feb 4;144(3):389-401 11526106 - J Biol Chem. 2001 Oct 26;276(43):40183-9 12650639 - Biochem J. 2003 Jul 1;373(Pt 1):57-63 16990515 - Science. 2006 Dec 1;314(5804):1454-7 11923287 - J Biol Chem. 2002 May 31;277(22):20041-50 19470488 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9256-61 20100891 - J Gen Physiol. 2010 Feb;135(2):99-114 15576365 - J Biol Chem. 2005 Feb 18;280(7):6047-54 21540350 - J Physiol. 2011 Jul 1;589(Pt 13):3149-62 22452743 - Biochemistry. 2012 Apr 17;51(15):3170-7 19047057 - J Biol Chem. 2009 Jan 23;284(4):2106-13 17035995 - Nature. 2006 Oct 12;443(7112):651-7 19001665 - J Lipid Res. 2009 Apr;50 Suppl:S249-54 21330372 - J Biol Chem. 2011 Apr 8;286(14):12775-84 10559940 - Nat Cell Biol. 1999 Sep;1(5):280-7 20670831 - Neuron. 2010 Jul 29;67(2):224-38 24183667 - Cell Rep. 2013 Nov 14;5(3):813-25 11950893 - J Cell Sci. 2002 Apr 15;115(Pt 8):1769-75 15107860 - Nat Cell Biol. 2004 May;6(5):393-404 21562284 - J Neurosci. 2011 May 11;31(19):7199-211 23602387 - Dev Cell. 2013 Apr 29;25(2):144-55 21051544 - J Biol Chem. 2011 Jan 7;286(1):830-41 22722250 - Science. 2012 Aug 10;337(6095):727-30 12467583 - Neuron. 2002 Dec 5;36(5):787-90 11454456 - Curr Opin Cell Biol. 2001 Aug;13(4):485-92 21704602 - Anal Biochem. 2011 Oct 1;417(1):97-102 20404150 - Proc Natl Acad Sci U S A. 2010 May 4;107(18):8225-30 22075145 - Dev Cell. 2011 Nov 15;21(5):813-24 23237950 - Dev Cell. 2012 Dec 11;23(6):1129-40 9722606 - J Cell Biol. 1998 Aug 24;142(4):923-36 12165472 - Neuron. 2002 Aug 1;35(3):507-20 16793271 - Trends Cell Biol. 2006 Jul;16(7):351-61 23083708 - Biophys J. 2012 Oct 17;103(8):1657-65 3548823 - Biochemistry. 1987 Jan 27;26(2):612-22 |
| References_xml | – reference: 9478953 - J Biol Chem. 1998 Feb 27;273(9):5037-46 – reference: 21795401 - Mol Biol Cell. 2011 Sep;22(18):3498-507 – reference: 22791894 - Development. 2012 Aug;139(16):3040-50 – reference: 12650639 - Biochem J. 2003 Jul 1;373(Pt 1):57-63 – reference: 8639510 - Biochemistry. 1996 Mar 19;35(11):3587-94 – reference: 17035995 - Nature. 2006 Oct 12;443(7112):651-7 – reference: 15861130 - EMBO J. 2005 May 4;24(9):1664-73 – reference: 15023338 - Mol Cell. 2004 Mar 12;13(5):677-88 – reference: 15271978 - J Biol Chem. 2004 Oct 22;279(43):44683-9 – reference: 3548823 - Biochemistry. 1987 Jan 27;26(2):612-22 – reference: 9722606 - J Cell Biol. 1998 Aug 24;142(4):923-36 – reference: 12859901 - Cell. 2003 Jul 11;114(1):99-111 – reference: 24183667 - Cell Rep. 2013 Nov 14;5(3):813-25 – reference: 23630337 - J Gen Physiol. 2013 May;141(5):521-35 – reference: 18077555 - Mol Biol Cell. 2008 Feb;19(2):711-21 – reference: 21562284 - J Neurosci. 2011 May 11;31(19):7199-211 – reference: 16990515 - Science. 2006 Dec 1;314(5804):1454-7 – reference: 19001665 - J Lipid Res. 2009 Apr;50 Suppl:S249-54 – reference: 18299350 - J Cell Biol. 2008 Feb 25;180(4):803-12 – reference: 21540350 - J Physiol. 2011 Jul 1;589(Pt 13):3149-62 – reference: 15634669 - J Biol Chem. 2005 Mar 18;280(11):10501-8 – reference: 16443754 - J Cell Sci. 2006 Feb 1;119(Pt 3):571-81 – reference: 23237950 - Dev Cell. 2012 Dec 11;23(6):1129-40 – reference: 22722250 - Science. 2012 Aug 10;337(6095):727-30 – reference: 8662589 - J Biol Chem. 1996 May 17;271(20):12088-94 – reference: 12670425 - Neuron. 2003 Mar 27;37(6):963-75 – reference: 23213479 - Biol Open. 2012 Sep 15;1(9):857-62 – reference: 23899561 - Physiol Rev. 2013 Jul;93(3):1019-137 – reference: 19508231 - Biochem J. 2009 Aug 15;422(1):23-35 – reference: 15576365 - J Biol Chem. 2005 Feb 18;280(7):6047-54 – reference: 11950893 - J Cell Sci. 2002 Apr 15;115(Pt 8):1769-75 – reference: 11454456 - Curr Opin Cell Biol. 2001 Aug;13(4):485-92 – reference: 12771127 - J Cell Biol. 2003 May 26;161(4):779-91 – reference: 19047057 - J Biol Chem. 2009 Jan 23;284(4):2106-13 – reference: 12914695 - Cell. 2003 Aug 8;114(3):299-310 – reference: 21704602 - Anal Biochem. 2011 Oct 1;417(1):97-102 – reference: 23229899 - J Cell Biol. 2012 Dec 10;199(6):1003-16 – reference: 10559940 - Nat Cell Biol. 1999 Sep;1(5):280-7 – reference: 20404150 - Proc Natl Acad Sci U S A. 2010 May 4;107(18):8225-30 – reference: 23608234 - Prog Lipid Res. 2013 Jul;52(3):294-304 – reference: 16793271 - Trends Cell Biol. 2006 Jul;16(7):351-61 – reference: 20389282 - EMBO J. 2010 May 5;29(9):1489-98 – reference: 7777504 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5317-21 – reference: 22075145 - Dev Cell. 2011 Nov 15;21(5):813-24 – reference: 12165472 - Neuron. 2002 Aug 1;35(3):507-20 – reference: 24209621 - Cell. 2013 Nov 7;155(4):830-43 – reference: 11923287 - J Biol Chem. 2002 May 31;277(22):20041-50 – reference: 22452743 - Biochemistry. 2012 Apr 17;51(15):3170-7 – reference: 9148941 - J Biol Chem. 1997 May 16;272(20):13236-41 – reference: 15800195 - J Neurosci. 2005 Mar 30;25(13):3400-13 – reference: 10224048 - J Biol Chem. 1999 May 7;274(19):12990-5 – reference: 15635101 - Mol Biol Cell. 2005 Mar;16(3):1282-95 – reference: 11526106 - J Biol Chem. 2001 Oct 26;276(43):40183-9 – reference: 21295699 - Cell. 2011 Feb 4;144(3):389-401 – reference: 15107860 - Nat Cell Biol. 2004 May;6(5):393-404 – reference: 20670831 - Neuron. 2010 Jul 29;67(2):224-38 – reference: 23602387 - Dev Cell. 2013 Apr 29;25(2):144-55 – reference: 11244087 - J Biol Chem. 2001 Mar 16;276(11):7705-8 – reference: 20100891 - J Gen Physiol. 2010 Feb;135(2):99-114 – reference: 12467583 - Neuron. 2002 Dec 5;36(5):787-90 – reference: 17908202 - Traffic. 2007 Nov;8(11):1554-67 – reference: 22169478 - Sci Signal. 2011;4(203):ra87 – reference: 23083708 - Biophys J. 2012 Oct 17;103(8):1657-65 – reference: 18573078 - Annu Rev Biophys. 2008;37:175-95 – reference: 17927563 - Biochem J. 2008 Jan 15;409(2):501-9 – reference: 14502432 - J Membr Biol. 2003 Jul 15;194(2):77-89 – reference: 21330372 - J Biol Chem. 2011 Apr 8;286(14):12775-84 – reference: 23630338 - J Gen Physiol. 2013 May;141(5):537-55 – reference: 24415756 - J Biol Chem. 2014 Feb 28;289(9):6120-32 – reference: 19470488 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9256-61 – reference: 21051544 - J Biol Chem. 2011 Jan 7;286(1):830-41 |
| SSID | ssj0009580 |
| Score | 2.424724 |
| Snippet | Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | E2281 |
| SubjectTerms | 1-Phosphatidylinositol 4-Kinase - metabolism Androstadienes - pharmacology Cell Membrane - metabolism Cells, Cultured Golgi Apparatus - metabolism Humans KCNQ2 Potassium Channel - physiology KCNQ3 Potassium Channel - physiology Kidney - cytology Membrane Potentials - physiology Myosin Type II - metabolism Phosphatidylinositol 4,5-Diphosphate - metabolism Phosphatidylinositols - metabolism Protein Kinase Inhibitors - pharmacology |
| Title | Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24843134 https://www.proquest.com/docview/1536681229 |
| Volume | 111 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qPHhR5-f8IoKHDSxrPtYmJ5HhVMRSQWG3kjapDLa22unZP92XtkNBBMFLTmlok997-b3k9fcQOvM0bHpcUkeKGAIUapSjfMEdpmJDNfOMiutiE34QiPFYhs2BW9mkVS58YuWodZ7YM_I-WKZntbKovCheHFs1yt6uNiU0llGLAZWxqPbH4pvorqjVCCRxPC7dhbSPz_pFpkrwElWMRgj5nV9W-8xo479vuInWG4aJL2tItNGSybZQu7HhEncboeneNvq4zqfPE6wyjQsg0TOFZ2YG0XNmsK28VeI8xeFtl_dCXGW029JYBs_zH71tp_NBL6TVWDNlNSiskIexI9wNgwfaZxgAgO1vxpmZ4qRWhdpBT6Orx-GN01RkcArK5NwRygoEMu6BJ4i9QUJclWhwCQAEIrVQVEEDNi6UZIYromOr6McYcESSGJbQXbSS5ZnZR1gaQ4mSA9-4Kfc1FW4sZSyZF2sxcFnaQaeLWY4A8fYaAz4ofyujr3nuoL16qaKiluaIKBfAiBg_-MPTh2gN2A-v8r7YEWqlYO_mGK0m7_NJ-XpSQQnaILz_BArY0Ow |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Golgi+and+plasma+membrane+pools+of+PI%284%29P+contribute+to+plasma+membrane+PI%284%2C5%29P2+and+maintenance+of+KCNQ2%2F3+ion+channel+current&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Dickson%2C+Eamonn+J&rft.au=Jensen%2C+Jill+B&rft.au=Hille%2C+Bertil&rft.date=2014-06-03&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=22&rft.spage=E2281&rft_id=info:doi/10.1073%2Fpnas.1407133111&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |