MRI and biomechanics multidimensional data analysis reveals R2‐R1ρ as an early predictor of cartilage lesion progression in knee osteoarthritis

Purpose To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder accompanied by biochemical and morphological changes in the articular cartilage, modulated by skeletal biomechanics and g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging Jg. 47; H. 1; S. 78 - 90
Hauptverfasser: Pedoia, Valentina, Haefeli, Jenny, Morioka, Kazuhito, Teng, Hsiang‐Ling, Nardo, Lorenzo, Souza, Richard B., Ferguson, Adam R., Majumdar, Sharmila
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.01.2018
Schlagworte:
ISSN:1053-1807, 1522-2586, 1522-2586
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder accompanied by biochemical and morphological changes in the articular cartilage, modulated by skeletal biomechanics and gait. While we can now acquire detailed information about the knee joint structure and function, we are not yet able to leverage the multifactorial factors for diagnosis and disease management of knee OA. Materials and Methods We mapped 178 subjects in a multidimensional space integrating: demographic, clinical information, gait kinematics and kinetics, cartilage compositional T1ρ and T2 and R2‐R1ρ (1/T2–1/T1ρ) acquired at 3T and whole‐organ magnetic resonance imaging score morphological grading. Topological data analysis (TDA) and Kolmogorov–Smirnov test were adopted for data integration, analysis, and hypothesis generation. Regression models were used for hypothesis testing. Results The results of the TDA showed a network composed of three main patient subpopulations, thus potentially identifying new phenotypes. T2 and T1ρ values (T2 lateral femur P = 1.45*10‐8, T1ρ medial tibia P = 1.05*10‐5), the presence of femoral cartilage defects (P = 0.0013), lesions in the meniscus body (P = 0.0035), and race (P = 2.44*10‐4) were key markers in the subpopulation classification. Within one of the subpopulations we observed an association between the composite metric R2‐R1ρ and the longitudinal progression of cartilage lesions. Conclusion The analysis presented demonstrates some of the complex multitissue biochemical and biomechanical interactions that define joint degeneration and OA using a multidimensional approach, and potentially indicates that R2‐R1ρ may be an imaging biomarker for early OA. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:78–90.
AbstractList Purpose To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder accompanied by biochemical and morphological changes in the articular cartilage, modulated by skeletal biomechanics and gait. While we can now acquire detailed information about the knee joint structure and function, we are not yet able to leverage the multifactorial factors for diagnosis and disease management of knee OA. Materials and Methods We mapped 178 subjects in a multidimensional space integrating: demographic, clinical information, gait kinematics and kinetics, cartilage compositional T1ρ and T2 and R2‐R1ρ (1/T2–1/T1ρ) acquired at 3T and whole‐organ magnetic resonance imaging score morphological grading. Topological data analysis (TDA) and Kolmogorov–Smirnov test were adopted for data integration, analysis, and hypothesis generation. Regression models were used for hypothesis testing. Results The results of the TDA showed a network composed of three main patient subpopulations, thus potentially identifying new phenotypes. T2 and T1ρ values (T2 lateral femur P = 1.45*10‐8, T1ρ medial tibia P = 1.05*10‐5), the presence of femoral cartilage defects (P = 0.0013), lesions in the meniscus body (P = 0.0035), and race (P = 2.44*10‐4) were key markers in the subpopulation classification. Within one of the subpopulations we observed an association between the composite metric R2‐R1ρ and the longitudinal progression of cartilage lesions. Conclusion The analysis presented demonstrates some of the complex multitissue biochemical and biomechanical interactions that define joint degeneration and OA using a multidimensional approach, and potentially indicates that R2‐R1ρ may be an imaging biomarker for early OA. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:78–90.
To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder accompanied by biochemical and morphological changes in the articular cartilage, modulated by skeletal biomechanics and gait. While we can now acquire detailed information about the knee joint structure and function, we are not yet able to leverage the multifactorial factors for diagnosis and disease management of knee OA.PURPOSETo couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder accompanied by biochemical and morphological changes in the articular cartilage, modulated by skeletal biomechanics and gait. While we can now acquire detailed information about the knee joint structure and function, we are not yet able to leverage the multifactorial factors for diagnosis and disease management of knee OA.We mapped 178 subjects in a multidimensional space integrating: demographic, clinical information, gait kinematics and kinetics, cartilage compositional T1ρ and T2 and R2 -R1ρ (1/T2 -1/T1ρ ) acquired at 3T and whole-organ magnetic resonance imaging score morphological grading. Topological data analysis (TDA) and Kolmogorov-Smirnov test were adopted for data integration, analysis, and hypothesis generation. Regression models were used for hypothesis testing.MATERIALS AND METHODSWe mapped 178 subjects in a multidimensional space integrating: demographic, clinical information, gait kinematics and kinetics, cartilage compositional T1ρ and T2 and R2 -R1ρ (1/T2 -1/T1ρ ) acquired at 3T and whole-organ magnetic resonance imaging score morphological grading. Topological data analysis (TDA) and Kolmogorov-Smirnov test were adopted for data integration, analysis, and hypothesis generation. Regression models were used for hypothesis testing.The results of the TDA showed a network composed of three main patient subpopulations, thus potentially identifying new phenotypes. T2 and T1ρ values (T2 lateral femur P = 1.45*10-8 , T1ρ medial tibia P = 1.05*10-5 ), the presence of femoral cartilage defects (P = 0.0013), lesions in the meniscus body (P = 0.0035), and race (P = 2.44*10-4 ) were key markers in the subpopulation classification. Within one of the subpopulations we observed an association between the composite metric R2 -R1ρ and the longitudinal progression of cartilage lesions.RESULTSThe results of the TDA showed a network composed of three main patient subpopulations, thus potentially identifying new phenotypes. T2 and T1ρ values (T2 lateral femur P = 1.45*10-8 , T1ρ medial tibia P = 1.05*10-5 ), the presence of femoral cartilage defects (P = 0.0013), lesions in the meniscus body (P = 0.0035), and race (P = 2.44*10-4 ) were key markers in the subpopulation classification. Within one of the subpopulations we observed an association between the composite metric R2 -R1ρ and the longitudinal progression of cartilage lesions.The analysis presented demonstrates some of the complex multitissue biochemical and biomechanical interactions that define joint degeneration and OA using a multidimensional approach, and potentially indicates that R2 -R1ρ may be an imaging biomarker for early OA.CONCLUSIONThe analysis presented demonstrates some of the complex multitissue biochemical and biomechanical interactions that define joint degeneration and OA using a multidimensional approach, and potentially indicates that R2 -R1ρ may be an imaging biomarker for early OA.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:78-90.LEVEL OF EVIDENCE3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:78-90.
Author Morioka, Kazuhito
Majumdar, Sharmila
Souza, Richard B.
Nardo, Lorenzo
Ferguson, Adam R.
Pedoia, Valentina
Teng, Hsiang‐Ling
Haefeli, Jenny
AuthorAffiliation 4 San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
2 Weill Institute for Neurosciences, Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, California, USA
3 Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA
1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
AuthorAffiliation_xml – name: 3 Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA
– name: 1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
– name: 4 San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
– name: 2 Weill Institute for Neurosciences, Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, California, USA
Author_xml – sequence: 1
  givenname: Valentina
  surname: Pedoia
  fullname: Pedoia, Valentina
  email: valentina.pedoia@ucsf.edu
  organization: University of California
– sequence: 2
  givenname: Jenny
  surname: Haefeli
  fullname: Haefeli, Jenny
  organization: University of California
– sequence: 3
  givenname: Kazuhito
  surname: Morioka
  fullname: Morioka, Kazuhito
  organization: University of California
– sequence: 4
  givenname: Hsiang‐Ling
  surname: Teng
  fullname: Teng, Hsiang‐Ling
  organization: University of California
– sequence: 5
  givenname: Lorenzo
  surname: Nardo
  fullname: Nardo, Lorenzo
  organization: University of California
– sequence: 6
  givenname: Richard B.
  surname: Souza
  fullname: Souza, Richard B.
  organization: University of California
– sequence: 7
  givenname: Adam R.
  surname: Ferguson
  fullname: Ferguson, Adam R.
  email: adam.ferguson@ucsf.edu
  organization: San Francisco Veterans Affairs Medical Center
– sequence: 8
  givenname: Sharmila
  surname: Majumdar
  fullname: Majumdar, Sharmila
  organization: University of California
BookMark eNpVkc1u1DAUhS1URH9gwxN4ySbFduLE2SChipaiIqRRu7au7ZsZF8ce7Eyr2cEbIF6s79AnITOtkFjdI51P312cY3IQU0RC3nJ2yhkT72_H7E-F7CR7QY64FKISUrUHc2ayrrhi3SE5LuWWMdb3jXxFDoVqOi6b-oj8-bq4pBAdNT6NaFcQvS103ITJOz9iLD5FCNTBBDMGYVt8oRnvEEKhC_H48_eCP_yiUOaWIuSwpeuMztspZZoGaiFPPsASacCda27TMmPZZx_p94hIU5kwzeAq-8mX1-TlMNvxzfM9ITfnn67PPldX3y4uzz5eVWtRt6xSXEpA21gjhRJqUM46cEYYxwbbiKHjLQAzFq1sWo697OvWcIQejGvM0NUn5MOTd70xIzqLccoQ9Dr7EfJWJ_D6_yb6lV6mOy37tqt7NgvePQty-rHBMunRF4shQMS0KZqrXoquU0rNKH9C733A7b8fnOndgnq3oN4vqL_Mg-xT_Rcj4piQ
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
DBID 7X8
5PM
DOI 10.1002/jmri.25750
DatabaseName MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 90
ExternalDocumentID PMC5967390
JMRI25750
Genre article
GrantInformation_xml – fundername: Wings for Life
  funderid: P50 AR060752, R01 AR062370, R01AR046905
– fundername: Craig H. Neilsen Foundation
  funderid: R01NS067092, R01NS088475
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, USA (NIH‐NIAMS). This content is solely the responsibility of the authors and does not necessarily reflect the views of the NIH‐NIAMS.
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
7X8
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-p2360-8155aec4cb52828f8dcdadb2bd0fc42f716aa0bcec5461e95936b1ea9abd4bf73
IEDL.DBID DRFUL
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 18:17:48 EDT 2025
Fri Jul 11 09:49:33 EDT 2025
Wed Jan 22 17:05:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2360-8155aec4cb52828f8dcdadb2bd0fc42f716aa0bcec5461e95936b1ea9abd4bf73
Notes The first two authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1002/jmri.25750
PMID 28471543
PQID 1895277888
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5967390
proquest_miscellaneous_1895277888
wiley_primary_10_1002_jmri_25750_JMRI25750
PublicationCentury 2000
PublicationDate January 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Journal of magnetic resonance imaging
PublicationYear 2018
References 1998; 28
2015; 6
2013; 3
2013; 69
2009; 42
2013; 21
2015; 74
2015; 33
2008; 16
2008; 58
2008; 12
2006; 19
2009; 130
2001; 29
2001; 46
1957; 16
1994; 84
2014; 22
2009; 55
2015; 23
2004; 52
2013; 38
2015; 20
2004; 12
2016; 43
2011; 66
2014; 35
2005; 54
2016
2015
2005; 3
2014; 39
2005; 37
2011; 29
2016; 45
References_xml – volume: 3
  start-page: 1236
  year: 2013
  article-title: Extracting insights from the shape of complex data using topology
  publication-title: Sci Rep
– volume: 130
  start-page: 144115
  year: 2009
  article-title: Topological methods for exploring low‐density states in biomolecular folding pathways
  publication-title: J Chem Phys
– volume: 33
  start-page: 38
  year: 2015
  end-page: 42
  article-title: Chemical exchange in knee cartilage assessed by R1rho (1/T1rho) dispersion at 3T
  publication-title: Magn Reson Imaging
– volume: 58
  start-page: 26
  year: 2008
  end-page: 35
  article-title: Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II
  publication-title: Arthritis Rheum
– volume: 21
  start-page: 10
  year: 2013
  end-page: 15
  article-title: Osteoarthritis as a disease of mechanics
  publication-title: Osteoarthritis Cartilage
– volume: 33
  start-page: 38
  year: 2015
  end-page: 42
  article-title: Chemical exchange in knee cartilage assessed by R1rho (1/T1rho) dispersion at 3 T
  publication-title: J Magn Reson Imaging
– volume: 3
  start-page: 3043
  year: 2005
  end-page: 3046
  article-title: Combined image processing techniques for characterization of MRI cartilage of the knee
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 20
  start-page: 533
  year: 2015
  end-page: 539
  article-title: Applying computation biology and “big data” to develop multiplex diagnostics for complex chronic diseases such as osteoarthritis
  publication-title: Biomarkers
– volume: 23
  start-page: 525
  year: 2015
  end-page: 531
  article-title: Association of cartilage degeneration with four year weight gain—3T MRI data from the Osteoarthritis Initiative
  publication-title: Osteoarthritis Cartilage
– volume: 52
  start-page: 1103
  year: 2004
  end-page: 1109
  article-title: Reduction of residual dipolar interaction in cartilage by spin‐lock technique
  publication-title: Magn Reson Med
– volume: 6
  start-page: 8581
  year: 2015
  article-title: Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury
  publication-title: Nat Commun
– volume: 22
  start-page: 1367
  year: 2014
  end-page: 1376
  article-title: Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis
  publication-title: Osteoarthritis Cartilage
– volume: 84
  start-page: 351
  year: 1994
  end-page: 358
  article-title: The effects of specific medical conditions on the functional limitations of elders in the Framingham Study
  publication-title: Am J Public Health
– volume: 58
  start-page: 15
  year: 2008
  end-page: 25
  article-title: Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I
  publication-title: Arthritis Rheum
– volume: 38
  start-page: 991
  year: 2013
  end-page: 1008
  article-title: Quantitative MRI of articular cartilage and its clinical applications
  publication-title: J Magn Reson Imaging
– volume: 46
  start-page: 487
  year: 2001
  end-page: 493
  article-title: T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study
  publication-title: Magn Reson Med
– volume: 43
  start-page: 970
  year: 2016
  end-page: 980
  article-title: Fully automatic analysis of the knee articular cartilage T1rho relaxation time using voxel‐based relaxometry
  publication-title: J Magn Reson Imaging
– year: 2016
  article-title: Composite metric R2‐R1rho (1/T2–1/T1rho) as a potential MR imaging biomarker associated with changes in pain after ACL reconstruction: A six‐month follow‐up
  publication-title: J Orthop Res
– volume: 28
  start-page: 88
  year: 1998
  end-page: 96
  article-title: Knee injury and osteoarthritis outcome score (KOOS)—development of a self‐administered outcome measure
  publication-title: J Orthop Sports Phys Ther
– volume: 16
  start-page: 494
  year: 1957
  end-page: 502
  article-title: Radiological assessment of osteo‐arthrosis
  publication-title: Ann Rheum Dis
– volume: 37
  start-page: 446
  year: 2005
  end-page: 456
  article-title: Bone mineral density and vertebral fracture history are associated with incident and progressive radiographic knee osteoarthritis in elderly men and women: the Rotterdam Study
  publication-title: Bone
– volume: 12
  start-page: 120
  year: 2008
  end-page: 135
  article-title: Inter‐subject comparison of MRI knee cartilage thickness
  publication-title: Med Image Anal
– year: 2016
  article-title: New insights into rotating frame relaxation at high field
  publication-title: NMR Biomed
– volume: 55
  start-page: 213
  year: 2009
  article-title: Western Ontario and McMaster Universities osteoarthritis index (WOMAC)
  publication-title: Aust J Physiother
– volume: 29
  start-page: 324
  year: 2011
  end-page: 334
  article-title: Quantitative MRI using T1rho and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology
  publication-title: Magn Reson Imaging
– volume: 74
  start-page: 1353
  year: 2015
  end-page: 1359
  article-title: Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative
  publication-title: Ann Rheum Dis
– start-page: 257
  year: 2015
  end-page: 270
– volume: 12
  start-page: 177
  year: 2004
  end-page: 190
  article-title: Whole‐organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis
  publication-title: Osteoarthritis Cartilage
– volume: 54
  start-page: 929
  year: 2005
  end-page: 936
  article-title: In vivo 3T spiral imaging based multi‐slice t1rho mapping of knee cartilage in osteoarthritis
  publication-title: Magn Reson Med
– volume: 19
  start-page: 781
  year: 2006
  end-page: 821
  article-title: Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage
  publication-title: NMR Biomed
– volume: 16
  start-page: 873
  year: 2008
  end-page: 882
  article-title: Joint space narrowing and Kellgren‐Lawrence progression in knee osteoarthritis: an analytic literature synthesis
  publication-title: Osteoarthritis Cartilage
– volume: 39
  start-page: 1287
  year: 2014
  end-page: 1293
  article-title: Simultaneous acquisition of T1rho and T2 quantification in knee cartilage: repeatability and diurnal variation
  publication-title: J Magn Reson Imaging
– volume: 66
  start-page: 1563
  year: 2011
  end-page: 1571
  article-title: Contributions of chemical exchange to T1rho dispersion in a tissue model
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1357
  year: 2013
  end-page: 1366
  article-title: Contributions of chemical and diffusive exchange to T1rho dispersion
  publication-title: Magn Reson Med
– volume: 45
  start-page: 653
  year: 2016
  end-page: 660
  article-title: MRI findings associated with development of incident knee pain over 48 months: data from the osteoarthritis initiative
  publication-title: Skeletal Radiol
– volume: 29
  start-page: 213
  year: 2001
  end-page: 218
  article-title: Development and evaluation of an activity rating scale for disorders of the knee
  publication-title: Am J Sports Med
– volume: 35
  start-page: 4904
  year: 2014
  end-page: 4915
  article-title: Topological methods reveal high and low functioning neuro‐phenotypes within fragile X syndrome
  publication-title: Hum Brain Mapp
– volume: 23
  start-page: 2214
  year: 2015
  end-page: 2223
  article-title: Cartilage T1rho and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites
  publication-title: Osteoarthritis Cartilage
– volume: 42
  start-page: 377
  year: 2009
  end-page: 381
  article-title: Research electronic data capture (REDCap)—a metadata‐driven methodology and workflow process for providing translational research informatics support
  publication-title: J Biomed Inform
SSID ssj0009945
Score 2.4465039
Snippet Purpose To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a...
To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a...
SourceID pubmedcentral
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 78
SubjectTerms machine learning
MRI
osteoarthritis
precision medicine
R2‐R1ρ
T1ρ/T2
topological data analysis
Title MRI and biomechanics multidimensional data analysis reveals R2‐R1ρ as an early predictor of cartilage lesion progression in knee osteoarthritis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25750
https://www.proquest.com/docview/1895277888
https://pubmed.ncbi.nlm.nih.gov/PMC5967390
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 20201207
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dbtMwFMet0SG0G77RysdkJK6QwmLHiR2JGwRUDLEKVUz0LvLHsVa2pVXLuN7eAPFivANPwjlO11LuEHeJYltRzrHzP7bPz4w9KzBk0ApCVoPLM2V9njklAgo5EaOPNoAO6bAJPRya8bj-uMVeXuXCdHyI1YQb9Yw0XlMHt26xv4aGfjmbT16gw1HAvi3Rccse234zGhx9WEN363RIMUqIIhMm1ys8qdxf196Qln9vjPxTsKY_zuDW_73rbXZzqTT5q8417rAtaO-yG4fLtfR77Mfh6IDbNvCUgU8JwBO_4GmDYSDkf4fr4LSFFIt16BJOwCd0WD6Svy6-j8TPS24X-JQDcZL5bE6tYxTPp5F7cspTHK74KVBbPG0F6zAgfNLykxaAU4rJFAseJ7bSfXY0ePvp9btseUJDNpNFlWcG1YgFr7wrKXSLJvhgg5Mu5NErGTEYszZ3HnypKgEEQa6cAFtbF5SLunjAeu20hV3GSy-xqjWACkiBEq6IPgAUxknhy8r12dMrMzXYA2hZw7YwPV80wtSl1BTK95nesF8z64gdDTG0N5-0k-PE0i7rShd13mfPk_1WNTqas2zIck2yXPMezZKuHv5L4UdsBzWW6WZtHrPe1_k5PGHX_Tf8qvM9dk2Pzd7Sb_Hu88HwN_wu-5I
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LbxMxEMetqlTQC5SXGgplkDghLV17va8jQlRNaSIUFdHbyo-xGiibKKGc4RugfjG-A5-EGW9IGm6I20p-aLUz9v7HHv8sxPOMQoZSo09qtGmijUsTq6UnISdDcMF4LH28bKIcDquzs_rdIjeHz8J0fIjlghuPjDhf8wDnBemDFTX04-fZ-CV5HEfsNzQpDb654UN_uGLu1vGOYlIQWSKrtFzSSdXBqu2asvw7L_K6Xo0_nMM7__mqO-L2QmnCq8417ooNbO-Jm4PFXvp9cTUY9cG0HuIJfD4APHZziAmGnpH_Ha4DOIWUqnXoEmDgEzksjNSvbz9G8ud3MHMqBWROMkxn3DtF8TAJ4NgpL2i6ggvkviCmgnUYEBi38KlFBD5iMqGK55Gt9EC8P3xz-vooWdzQkExVVqRJRWrEoNPO5hy6hco7b7xV1qfBaRUoGDMmtQ5drguJDEEurERTG-u1DWX2UGy2kxZ3BeROUVNTISkgjVraLDiPmFVWSZcXtiee_bFTQyOAtzVMi5PLeSOrOlclh_I9Ua4ZsJl2xI6GGdrrJe34PLK087ooszrtiRfRgMsWHc1ZNWy5JlquOSazxKdH_1L5qbh1dDo4aU76w7d7Ypv0VtWt4DwWm19ml_hEbLmv9IVn-9F5fwMgcfxd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtNAEIBXKK0qLkD5EYFCB4kTkql3vY7tI2qJKLRRFVGpN2t_ZtVAcaKEcoY3QLwY79An6czaJA03xM3S_sjyzK5ndme-EeJlRi5DodEnFdo00calidXSkyEnQ3DBeCx8LDZRjEbl2Vl10sXmcC5My4dYHrjxyoj7NS9wnPmwt6KGfvoyn7wmjWOPfUNzFZme2DgYD0-PVtTdKlYpJhsiS2SZFks-qdpbjV6zLf-OjLxpscZfzvDuf77sPXGnszXhTasc2-IWNvfF1nF3m_5A_DoeH4JpPMQcfE4BnrgFxBBDz9D_FtgBHERK3Vp4CTDyiVQWxurq-8-x_P0DzIJaAZmUDLM5z05-PEwDOFbLC9qw4AJ5LojBYC0IBCYNfG4QgZNMptTxPNKVHorT4duP---SrkZDMlPZIE1KskcMOu1szs5bKL3zxltlfRqcVoHcMWNS69DleiCRMcgDK9FUxnptQ5E9Er1m2uBjAblTNNSUSDaQRi1tFpxHzEqrpMsHti9e_JFTTWuALzZMg9PLRS3LKlcFO_N9UawJsJ61zI6aKdrrLc3kPNK0SXGKrEr74lUU4HJEy3NWNUuujpKr35NY4tOTf-m8K7ZODob10eHow1Nxmwyusj3C2RG9r_NLfCY23Tf6wPPnnfZeA6YP_QY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+and+Biomechanics+Multidimensional+Data+Analysis+Reveals+R2-R1%CF%81+as+an+Early+Predictor+of+Cartilage+Lesion+Progression+in+Knee+Osteoarthritis&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Pedoia%2C+Valentina&rft.au=Haefeli%2C+Jenny&rft.au=Morioka%2C+Kazuhito&rft.au=Teng%2C+Hsiang-Ling&rft.date=2018-01-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=47&rft.issue=1&rft.spage=78&rft.epage=90&rft_id=info:doi/10.1002%2Fjmri.25750&rft_id=info%3Apmid%2F28471543&rft.externalDocID=PMC5967390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon