Neural Architecture Search with In‐Memory Multiply–Accumulate and In‐Memory Rank Based on Coating Layer Optimized C‐Doped Ge2Sb2Te5 Phase Change Memory
Neural architecture search (NAS), as a subfield of automated machine learning, can design neural network models with better performance than manual design. However, the energy and time consumptions of conventional software‐based NAS are huge, hindering its development and applications. Herein, 4 Mb...
Gespeichert in:
| Veröffentlicht in: | Advanced functional materials Jg. 34; H. 15 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc
10.04.2024
|
| Schlagworte: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!