Bi-HS-RRTX: an efficient sampling-based motion planning algorithm for unknown dynamic environments
In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challeng...
Uloženo v:
| Vydáno v: | Complex & intelligent systems Ročník 10; číslo 6; s. 7497 - 7512 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 2199-4536, 2198-6053 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challenging in achieving optimal motion planning in unknown dynamic environments. To address this issue, this paper proposes a novel motion planning algorithm Bi-HS-RRT
X
, which facilitates asymptotically optimal real-time planning in continuously changing unknown environments. The algorithm swiftly determines an initial feasible path by employing the bidirectional search. When dynamic obstacles render the planned path infeasible, the bidirectional search is reactivated promptly to reconstruct the search tree in a local area, thereby significantly reducing the search planning time. Additionally, this paper adopts a hybrid heuristic sampling strategy to optimize the planned path quality and search efficiency. The convergence of the proposed algorithm is accelerated by merging local biased sampling with nominal path and global heuristic sampling in hyper-ellipsoid region. To verify the effectiveness and efficiency of the proposed algorithm in unknown dynamic environments, numerous comparative experiments with existing algorithms were conducted. The experimental results indicate that the proposed planning algorithm has significant advantages in planned path length and planning time. |
|---|---|
| AbstractList | In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challenging in achieving optimal motion planning in unknown dynamic environments. To address this issue, this paper proposes a novel motion planning algorithm Bi-HS-RRT
X
, which facilitates asymptotically optimal real-time planning in continuously changing unknown environments. The algorithm swiftly determines an initial feasible path by employing the bidirectional search. When dynamic obstacles render the planned path infeasible, the bidirectional search is reactivated promptly to reconstruct the search tree in a local area, thereby significantly reducing the search planning time. Additionally, this paper adopts a hybrid heuristic sampling strategy to optimize the planned path quality and search efficiency. The convergence of the proposed algorithm is accelerated by merging local biased sampling with nominal path and global heuristic sampling in hyper-ellipsoid region. To verify the effectiveness and efficiency of the proposed algorithm in unknown dynamic environments, numerous comparative experiments with existing algorithms were conducted. The experimental results indicate that the proposed planning algorithm has significant advantages in planned path length and planning time. In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challenging in achieving optimal motion planning in unknown dynamic environments. To address this issue, this paper proposes a novel motion planning algorithm Bi-HS-RRTX, which facilitates asymptotically optimal real-time planning in continuously changing unknown environments. The algorithm swiftly determines an initial feasible path by employing the bidirectional search. When dynamic obstacles render the planned path infeasible, the bidirectional search is reactivated promptly to reconstruct the search tree in a local area, thereby significantly reducing the search planning time. Additionally, this paper adopts a hybrid heuristic sampling strategy to optimize the planned path quality and search efficiency. The convergence of the proposed algorithm is accelerated by merging local biased sampling with nominal path and global heuristic sampling in hyper-ellipsoid region. To verify the effectiveness and efficiency of the proposed algorithm in unknown dynamic environments, numerous comparative experiments with existing algorithms were conducted. The experimental results indicate that the proposed planning algorithm has significant advantages in planned path length and planning time. |
| Author | Li, Xu Xu, Qimin Zhou, Xinyi Liu, Xixiang Liao, Longjie |
| Author_xml | – sequence: 1 givenname: Longjie surname: Liao fullname: Liao, Longjie organization: School of Instrument Science and Engineering, Southeast University – sequence: 2 givenname: Qimin orcidid: 0000-0002-7159-8666 surname: Xu fullname: Xu, Qimin email: jimmy.xqm@gmail.com organization: School of Instrument Science and Engineering, Southeast University – sequence: 3 givenname: Xinyi surname: Zhou fullname: Zhou, Xinyi organization: School of Instrument Science and Engineering, Southeast University – sequence: 4 givenname: Xu surname: Li fullname: Li, Xu organization: School of Instrument Science and Engineering, Southeast University – sequence: 5 givenname: Xixiang surname: Liu fullname: Liu, Xixiang organization: School of Instrument Science and Engineering, Southeast University |
| BookMark | eNpFkNFKwzAUhoMoOOdewKuA19GTpE1a73SoEwbC3IV3JW2Tmdme1KZTfHvrJnh1fg4f_-F8Z-QYA1pCLjhccQB9HRPQiWYgEgY8TTUTR2QieJ4xBak83uecJalUp2QW4xYAuNaZBDEh5Z1nixe2Wq1fb6hBap3zlbc40GjarvG4YaWJtqZtGHxA2jUGcdxS02xC74e3lrrQ0x2-Y_hCWn-jaX1FLX76PmA7FsVzcuJME-3sb07J-uF-PV-w5fPj0_x2yToh9MDyPNeuVq6SXFiVZA6UqpQ10olccgNSg660k-mIlFlSAjhwtSirCkytuJySy0Nt14ePnY1DsQ27HseLheRcCw48USMlD1Ts-vEN2_9THIpfncVBZzHqLPY6CyF_AELSanE |
| Cites_doi | 10.1109/TMECH.2021.3068259 10.1109/TSSC.1968.300136 10.1177/0278364915577958 10.1109/TRO.2022.3181947 10.1177/0278364915594679 10.1109/TIV.2022.3152740 10.1109/TIV.2023.3307283 10.1177/0278364911406761 10.1109/TSMC.2021.3088776 10.1109/TITS.2022.3193679 10.1109/TIV.2021.3123341 10.1109/TRO.2018.2830331 10.1016/j.eswa.2019.01.032 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s40747-024-01557-2 |
| DatabaseName | Springer Nature OA Free Journals ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 2198-6053 |
| EndPage | 7512 |
| ExternalDocumentID | 10_1007_s40747_024_01557_2 |
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML ABUWG AZQEC DWQXO PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-p227t-9997fd6fc312e648f066c6ea3f2931a03707c7f356fcb84b00f0fd2bcc0ad613 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001273151100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-4536 |
| IngestDate | Wed Oct 08 14:21:06 EDT 2025 Fri Feb 21 02:37:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Motion planning Replanning Bidirectional search Heuristic sampling Dynamic environments |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p227t-9997fd6fc312e648f066c6ea3f2931a03707c7f356fcb84b00f0fd2bcc0ad613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7159-8666 |
| OpenAccessLink | https://link.springer.com/10.1007/s40747-024-01557-2 |
| PQID | 3117210146 |
| PQPubID | 2044308 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3117210146 springer_journals_10_1007_s40747_024_01557_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Complex & intelligent systems |
| PublicationTitleAbbrev | Complex Intell. Syst |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | CR18 CR17 CR16 CR15 Gammell, Barfoot, Srinivasa (CR30) 2018; 34 Ribeiro, Cota, Euzébio, Ramírez, Guimarães (CR1) 2022; 52 CR14 Yin (CR2) 2023; 24 CR12 CR11 Karaman, Frazzoli (CR10) 2011; 30 CR31 Otte, Frazzoli (CR13) 2016; 35 Hart, Nilsson, Raphael (CR4) 1968; 4 Jeong, Lee, Kim (CR22) 2019; 123 Zhao, Tao, Ding (CR3) 2022; 27 CR6 CR5 Janson, Schmerling, Clark, Pavone (CR32) 2015; 34 CR8 CR29 Li, Liu, Yang, Wang, Qie, Xiang (CR7) 2022; 7 CR9 CR27 CR26 CR25 CR24 Nayak, Otte (CR28) 2022; 38 CR23 CR21 Zhang, Wang, Yin, Wang, Hua (CR20) 2024; 9 Ma, Meng, Ye, Wang, Meng (CR19) 2022; 7 |
| References_xml | – volume: 27 start-page: 561 issue: 1 year: 2022 end-page: 571 ident: CR3 article-title: Multimobile robot cluster system for robot machining of large-scale workpieces publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2021.3068259 – volume: 4 start-page: 100 issue: 2 year: 1968 end-page: 107 ident: CR4 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans Syst Sci Cybern doi: 10.1109/TSSC.1968.300136 – volume: 34 start-page: 883 issue: 7 year: 2015 end-page: 921 ident: CR32 article-title: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions publication-title: Int J Robot Res doi: 10.1177/0278364915577958 – ident: CR18 – volume: 38 start-page: 3636 issue: 6 year: 2022 end-page: 3654 ident: CR28 article-title: Bidirectional sampling-based motion planning without two-point boundary value solution publication-title: IEEE Trans Robot doi: 10.1109/TRO.2022.3181947 – volume: 35 start-page: 797 issue: 7 year: 2016 end-page: 822 ident: CR13 article-title: Rrtx: asymptotically optimal single-query sampling-based motion planning with quick replanning publication-title: Int J Robot Res doi: 10.1177/0278364915594679 – volume: 7 start-page: 722 issue: 3 year: 2022 end-page: 733 ident: CR19 article-title: Bi-risk-rrt based efficient motion planning for autonomous ground vehicles publication-title: IEEE Trans Intell Veh doi: 10.1109/TIV.2022.3152740 – ident: CR14 – ident: CR16 – ident: CR12 – volume: 9 start-page: 1282 issue: 1 year: 2024 end-page: 1293 ident: CR20 article-title: Bi-am-rrt*: a fast and efficient sampling-based motion planning algorithm in dynamic environments publication-title: IEEE Trans Intell Veh doi: 10.1109/TIV.2023.3307283 – ident: CR6 – ident: CR29 – volume: 30 start-page: 846 issue: 7 year: 2011 end-page: 894 ident: CR10 article-title: Sampling-based algorithms for optimal motion planning publication-title: Int J Robot Res doi: 10.1177/0278364911406761 – volume: 52 start-page: 6682 issue: 11 year: 2022 end-page: 6696 ident: CR1 article-title: Unmanned-aerial-vehicle routing problem with mobile charging stations for assisting search and rescue missions in postdisaster scenarios publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2021.3088776 – ident: CR8 – volume: 24 start-page: 13161 issue: 11 year: 2023 end-page: 13170 ident: CR2 article-title: Multiobjective optimization for vehicle routing optimization problem in low-carbon intelligent transportation publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2022.3193679 – ident: CR25 – ident: CR27 – ident: CR23 – ident: CR21 – volume: 7 start-page: 263 issue: 2 year: 2022 end-page: 272 ident: CR7 article-title: An optimization-based path planning approach for autonomous vehicles using the dynefwa-artificial potential field publication-title: IEEE Trans Intell Veh doi: 10.1109/TIV.2021.3123341 – ident: CR15 – ident: CR17 – ident: CR31 – volume: 34 start-page: 966 issue: 4 year: 2018 end-page: 984 ident: CR30 article-title: Informed sampling for asymptotically optimal path planning publication-title: IEEE Trans Robot doi: 10.1109/TRO.2018.2830331 – ident: CR11 – ident: CR9 – ident: CR5 – ident: CR26 – ident: CR24 – volume: 123 start-page: 82 year: 2019 end-page: 90 ident: CR22 article-title: Quick-rrt*: triangular inequality-based implementation of rrt* with improved initial solution and convergence rate publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.01.032 |
| SSID | ssj0001778302 ssib044733412 ssib045327741 |
| Score | 2.2755837 |
| Snippet | In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 7497 |
| SubjectTerms | Algorithms Asymptotic methods Complexity Computational Intelligence Data Structures and Information Theory Efficiency Engineering Heuristic Motion planning Optimization Original Article Real time Robot dynamics Sampling Searching Unknown environments |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6KlIA-MWCS2EycsCBCoC1VVOlQskePYpRJNS9Mi8e85u0kLDCyMUSJb8dm-57vzewhdmAgQm9ZwLPEkJTwzPolDLYjUPDJBGFvSNic2IdrtqN-PO2XArSjLKqs90W3U2VjZGPkV8-1hxVKd3EzeiVWNstnVUkJjHW1YlgQr3dAJXqr5xLlgjK_cNw8YFZXSjIvBCGHpr6z-nB_HhLtMZmN5u45bcnkCToxYYCEI_YFCfyVOnT963P3vn-yhnRKJ4tvF1NlHazo_QNtPSxrX4hCld0PSeibdbq9_jWWOteObADeFC2kr0fMBsV4wwwstIDwpFZCwfBtAj7PXEQZMjOe5jdzlOPvM5Wio8PfLdUeo9_jQu2-RUpSBTCgVMwKAUpgsNIr5VIdgUMAsKtSSGQAOvvSY8IQShgXwSRpxWNXGMxlNlfJkBtjhGNXyca5PEA7gWUgWRwG0k8owBSSTZgCZUu0JzeM6albjl5QLq0hWg1dHl5UFVq-XJMzOdgnYLnG2S2jj79ZO0Ra1lnaFKk1Um03n-gxtqo_ZsJieu2n1Bes60Os priority: 102 providerName: ProQuest |
| Title | Bi-HS-RRTX: an efficient sampling-based motion planning algorithm for unknown dynamic environments |
| URI | https://link.springer.com/article/10.1007/s40747-024-01557-2 https://www.proquest.com/docview/3117210146 |
| Volume | 10 |
| WOSCitedRecordID | wos001273151100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8MeNCD30YQSQ8ebbKt3bp5EwLBA2RBDuhl6bYWSXQQNvz7fS0bookHvSxp2jTL68f7vb73fg-hW-UDYpMSzBJLOISlyiaBJzkRkvnK9QJN2maKTfDRyJ9Og7BMCsuraPfKJWlu6m2yG9Nc7wR0CtF6nhO4eOuu7QeaMb_7xTnOGKeUlUrbvLRwrkmudJU5OwgIM_7K5u_TfsOaP9yjRuv0j__3vyfoqESZ-GGzLU7RnszO0OEO9yC0hlvC1vwcxZ05GTyR8Xgyvcciw9IwS4BCwrnQMefZjGh9l-JN1R-8LGsdYfE2W6zmxes7BvSL15l-o8twuqlzj3fT6C7QpN-bdAekLL9Alo7DCwLQkavUUwm1HenB0gE6STwpqAKIYAuLcosnXFEXhsQ-g_OrLJU6cZJYIgWUcIlq2SKTVwi70OaCBr4L88TCiwGzxCmAo1haXLKggVqVxKPyCOURtbV1qrltGuiukvBX95Zu2Yg5AjFHRsyR0_zb8Gt04OhFMiEqLVQrVmt5g_aTj2Ker9qo3umNwnHbbLG2sdjhG7ov0BM-DsPnT9EGzKU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL3iJQEL2vIQr1Ivyg6LxHbiBAlVbQHNCGY0orOYriInsYeRIAxkaMVH8Y9ce5KZwqI7FiyjRJade-x7_DoH4KuJkLFpjdMSTzEqcuPTONSSKi0iE4SxFW1zZhOy3Y56vbgzA0_1XRh7rLIeE91And9mdo38kPt2smKlTr4N76h1jbK7q7WFxhgW5_rxL07ZyuPmCcZ3n7Gz0-7PBq1cBeiQMTmiyIikyUOTcZ_pEGuESTcLteIGM5-vPC49mUnDA_wkjQTC0ngmZ2mWeSrH5IfFzsK8QKxjh5rvNFud3zWAhZCciylfEAFnsra2cYs-Ulq9LWt458cxFW7rdHtynU9YNXuKWZNaJiMpe0F7X-3UugR49uGd_bqPsFIxbfJ93DU-wYwuVmG5NZGpLdcg_TGgjV_08rLbOyKqINrpaWAaJqWyJ-2LPrVZPidjryMyrByeiLruYwNHVzcEOT95KOzKZEHyx0LdDDLy7-XBdei-RRs3YK64LfQmkACfpeJxFGA5qQpTZGppjpQw1Z7UIt6C3TpcSTVwlMk0VltwUAd8-noiMu2gkiBUEgeVhG3_v7QvsNjoti6Si2b7fAeWmAWZO5SzC3Oj-wf9GRayP6NBeb9XYZpA8sZQeAYPDC8V |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iInrwW9ycmoNHw_qRNq03nY6JOsbcYbeStsksuGysneB_70vWfSh4EI-hIS0vSd8vee_9fghdyQAQmxBwLLG4Q2gqbRL6ghEuaCA9P9SkbUZsgrXbQb8fdlaq-E22-zwkOatp0CxNqqiPU1lfFL5RzftOwL8Q7fMZgZ_who5I6aS-xpJ_nFLmurR04ObWhTFNeKUV5-wwJNTELqu_D_sNd_4IlRoP1Nz7_7fvo90SfeLb2XI5QGtCHaKdFU5CaL0siFzzIxTfZaT1SrrdXv8Gc4WFYZyAl-Gc61x0NSDaD6Z4pgaEx6UGEubvg9EkK96GGFAxnip9d6dw-qn4MEvwanndMeo1H3qNFillGcjYcVhBAFIymfoycW1H-DClgFoSX3BXAnSwueUyiyVMuh50iQMK-1paMnXiJLF4CujhBK2rkRKnCHvQZtwNAw_GibkfA5aJUwBNsbCYoGEF1ebWj8qtlUeurU-tmvOmgq7n1l4-XtAwGzNHYObImDlyqn_rfom2OvfN6Pmx_XSGth09XyaLpYbWi8lUnKPN5KPI8smFWXFfKyvTLQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-HS-RRTX%3A+an+efficient+sampling-based+motion+planning+algorithm+for+unknown+dynamic+environments&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Liao%2C+Longjie&rft.au=Xu%2C+Qimin&rft.au=Zhou%2C+Xinyi&rft.au=Li%2C+Xu&rft.date=2024-12-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=6&rft.spage=7497&rft.epage=7512&rft_id=info:doi/10.1007%2Fs40747-024-01557-2&rft.externalDocID=10_1007_s40747_024_01557_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |