Bi-HS-RRTX: an efficient sampling-based motion planning algorithm for unknown dynamic environments

In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challeng...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex & intelligent systems Ročník 10; číslo 6; s. 7497 - 7512
Hlavní autoři: Liao, Longjie, Xu, Qimin, Zhou, Xinyi, Li, Xu, Liu, Xixiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2024
Springer Nature B.V
Témata:
ISSN:2199-4536, 2198-6053
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challenging in achieving optimal motion planning in unknown dynamic environments. To address this issue, this paper proposes a novel motion planning algorithm Bi-HS-RRT X , which facilitates asymptotically optimal real-time planning in continuously changing unknown environments. The algorithm swiftly determines an initial feasible path by employing the bidirectional search. When dynamic obstacles render the planned path infeasible, the bidirectional search is reactivated promptly to reconstruct the search tree in a local area, thereby significantly reducing the search planning time. Additionally, this paper adopts a hybrid heuristic sampling strategy to optimize the planned path quality and search efficiency. The convergence of the proposed algorithm is accelerated by merging local biased sampling with nominal path and global heuristic sampling in hyper-ellipsoid region. To verify the effectiveness and efficiency of the proposed algorithm in unknown dynamic environments, numerous comparative experiments with existing algorithms were conducted. The experimental results indicate that the proposed planning algorithm has significant advantages in planned path length and planning time.
AbstractList In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challenging in achieving optimal motion planning in unknown dynamic environments. To address this issue, this paper proposes a novel motion planning algorithm Bi-HS-RRT X , which facilitates asymptotically optimal real-time planning in continuously changing unknown environments. The algorithm swiftly determines an initial feasible path by employing the bidirectional search. When dynamic obstacles render the planned path infeasible, the bidirectional search is reactivated promptly to reconstruct the search tree in a local area, thereby significantly reducing the search planning time. Additionally, this paper adopts a hybrid heuristic sampling strategy to optimize the planned path quality and search efficiency. The convergence of the proposed algorithm is accelerated by merging local biased sampling with nominal path and global heuristic sampling in hyper-ellipsoid region. To verify the effectiveness and efficiency of the proposed algorithm in unknown dynamic environments, numerous comparative experiments with existing algorithms were conducted. The experimental results indicate that the proposed planning algorithm has significant advantages in planned path length and planning time.
In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the Rapidly-exploring Random Tree (RRT) algorithm and its variants have achieved significant success in known static environment, it is still challenging in achieving optimal motion planning in unknown dynamic environments. To address this issue, this paper proposes a novel motion planning algorithm Bi-HS-RRTX, which facilitates asymptotically optimal real-time planning in continuously changing unknown environments. The algorithm swiftly determines an initial feasible path by employing the bidirectional search. When dynamic obstacles render the planned path infeasible, the bidirectional search is reactivated promptly to reconstruct the search tree in a local area, thereby significantly reducing the search planning time. Additionally, this paper adopts a hybrid heuristic sampling strategy to optimize the planned path quality and search efficiency. The convergence of the proposed algorithm is accelerated by merging local biased sampling with nominal path and global heuristic sampling in hyper-ellipsoid region. To verify the effectiveness and efficiency of the proposed algorithm in unknown dynamic environments, numerous comparative experiments with existing algorithms were conducted. The experimental results indicate that the proposed planning algorithm has significant advantages in planned path length and planning time.
Author Li, Xu
Xu, Qimin
Zhou, Xinyi
Liu, Xixiang
Liao, Longjie
Author_xml – sequence: 1
  givenname: Longjie
  surname: Liao
  fullname: Liao, Longjie
  organization: School of Instrument Science and Engineering, Southeast University
– sequence: 2
  givenname: Qimin
  orcidid: 0000-0002-7159-8666
  surname: Xu
  fullname: Xu, Qimin
  email: jimmy.xqm@gmail.com
  organization: School of Instrument Science and Engineering, Southeast University
– sequence: 3
  givenname: Xinyi
  surname: Zhou
  fullname: Zhou, Xinyi
  organization: School of Instrument Science and Engineering, Southeast University
– sequence: 4
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  organization: School of Instrument Science and Engineering, Southeast University
– sequence: 5
  givenname: Xixiang
  surname: Liu
  fullname: Liu, Xixiang
  organization: School of Instrument Science and Engineering, Southeast University
BookMark eNpFkNFKwzAUhoMoOOdewKuA19GTpE1a73SoEwbC3IV3JW2Tmdme1KZTfHvrJnh1fg4f_-F8Z-QYA1pCLjhccQB9HRPQiWYgEgY8TTUTR2QieJ4xBak83uecJalUp2QW4xYAuNaZBDEh5Z1nixe2Wq1fb6hBap3zlbc40GjarvG4YaWJtqZtGHxA2jUGcdxS02xC74e3lrrQ0x2-Y_hCWn-jaX1FLX76PmA7FsVzcuJME-3sb07J-uF-PV-w5fPj0_x2yToh9MDyPNeuVq6SXFiVZA6UqpQ10olccgNSg660k-mIlFlSAjhwtSirCkytuJySy0Nt14ePnY1DsQ27HseLheRcCw48USMlD1Ts-vEN2_9THIpfncVBZzHqLPY6CyF_AELSanE
Cites_doi 10.1109/TMECH.2021.3068259
10.1109/TSSC.1968.300136
10.1177/0278364915577958
10.1109/TRO.2022.3181947
10.1177/0278364915594679
10.1109/TIV.2022.3152740
10.1109/TIV.2023.3307283
10.1177/0278364911406761
10.1109/TSMC.2021.3088776
10.1109/TITS.2022.3193679
10.1109/TIV.2021.3123341
10.1109/TRO.2018.2830331
10.1016/j.eswa.2019.01.032
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s40747-024-01557-2
DatabaseName Springer Nature OA Free Journals
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 7512
ExternalDocumentID 10_1007_s40747_024_01557_2
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
ABUWG
AZQEC
DWQXO
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-p227t-9997fd6fc312e648f066c6ea3f2931a03707c7f356fcb84b00f0fd2bcc0ad613
IEDL.DBID C24
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001273151100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-4536
IngestDate Wed Oct 08 14:21:06 EDT 2025
Fri Feb 21 02:37:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Motion planning
Replanning
Bidirectional search
Heuristic sampling
Dynamic environments
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p227t-9997fd6fc312e648f066c6ea3f2931a03707c7f356fcb84b00f0fd2bcc0ad613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7159-8666
OpenAccessLink https://link.springer.com/10.1007/s40747-024-01557-2
PQID 3117210146
PQPubID 2044308
PageCount 16
ParticipantIDs proquest_journals_3117210146
springer_journals_10_1007_s40747_024_01557_2
PublicationCentury 2000
PublicationDate 20241200
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References CR18
CR17
CR16
CR15
Gammell, Barfoot, Srinivasa (CR30) 2018; 34
Ribeiro, Cota, Euzébio, Ramírez, Guimarães (CR1) 2022; 52
CR14
Yin (CR2) 2023; 24
CR12
CR11
Karaman, Frazzoli (CR10) 2011; 30
CR31
Otte, Frazzoli (CR13) 2016; 35
Hart, Nilsson, Raphael (CR4) 1968; 4
Jeong, Lee, Kim (CR22) 2019; 123
Zhao, Tao, Ding (CR3) 2022; 27
CR6
CR5
Janson, Schmerling, Clark, Pavone (CR32) 2015; 34
CR8
CR29
Li, Liu, Yang, Wang, Qie, Xiang (CR7) 2022; 7
CR9
CR27
CR26
CR25
CR24
Nayak, Otte (CR28) 2022; 38
CR23
CR21
Zhang, Wang, Yin, Wang, Hua (CR20) 2024; 9
Ma, Meng, Ye, Wang, Meng (CR19) 2022; 7
References_xml – volume: 27
  start-page: 561
  issue: 1
  year: 2022
  end-page: 571
  ident: CR3
  article-title: Multimobile robot cluster system for robot machining of large-scale workpieces
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2021.3068259
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  end-page: 107
  ident: CR4
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans Syst Sci Cybern
  doi: 10.1109/TSSC.1968.300136
– volume: 34
  start-page: 883
  issue: 7
  year: 2015
  end-page: 921
  ident: CR32
  article-title: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions
  publication-title: Int J Robot Res
  doi: 10.1177/0278364915577958
– ident: CR18
– volume: 38
  start-page: 3636
  issue: 6
  year: 2022
  end-page: 3654
  ident: CR28
  article-title: Bidirectional sampling-based motion planning without two-point boundary value solution
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2022.3181947
– volume: 35
  start-page: 797
  issue: 7
  year: 2016
  end-page: 822
  ident: CR13
  article-title: Rrtx: asymptotically optimal single-query sampling-based motion planning with quick replanning
  publication-title: Int J Robot Res
  doi: 10.1177/0278364915594679
– volume: 7
  start-page: 722
  issue: 3
  year: 2022
  end-page: 733
  ident: CR19
  article-title: Bi-risk-rrt based efficient motion planning for autonomous ground vehicles
  publication-title: IEEE Trans Intell Veh
  doi: 10.1109/TIV.2022.3152740
– ident: CR14
– ident: CR16
– ident: CR12
– volume: 9
  start-page: 1282
  issue: 1
  year: 2024
  end-page: 1293
  ident: CR20
  article-title: Bi-am-rrt*: a fast and efficient sampling-based motion planning algorithm in dynamic environments
  publication-title: IEEE Trans Intell Veh
  doi: 10.1109/TIV.2023.3307283
– ident: CR6
– ident: CR29
– volume: 30
  start-page: 846
  issue: 7
  year: 2011
  end-page: 894
  ident: CR10
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: Int J Robot Res
  doi: 10.1177/0278364911406761
– volume: 52
  start-page: 6682
  issue: 11
  year: 2022
  end-page: 6696
  ident: CR1
  article-title: Unmanned-aerial-vehicle routing problem with mobile charging stations for assisting search and rescue missions in postdisaster scenarios
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2021.3088776
– ident: CR8
– volume: 24
  start-page: 13161
  issue: 11
  year: 2023
  end-page: 13170
  ident: CR2
  article-title: Multiobjective optimization for vehicle routing optimization problem in low-carbon intelligent transportation
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3193679
– ident: CR25
– ident: CR27
– ident: CR23
– ident: CR21
– volume: 7
  start-page: 263
  issue: 2
  year: 2022
  end-page: 272
  ident: CR7
  article-title: An optimization-based path planning approach for autonomous vehicles using the dynefwa-artificial potential field
  publication-title: IEEE Trans Intell Veh
  doi: 10.1109/TIV.2021.3123341
– ident: CR15
– ident: CR17
– ident: CR31
– volume: 34
  start-page: 966
  issue: 4
  year: 2018
  end-page: 984
  ident: CR30
  article-title: Informed sampling for asymptotically optimal path planning
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2018.2830331
– ident: CR11
– ident: CR9
– ident: CR5
– ident: CR26
– ident: CR24
– volume: 123
  start-page: 82
  year: 2019
  end-page: 90
  ident: CR22
  article-title: Quick-rrt*: triangular inequality-based implementation of rrt* with improved initial solution and convergence rate
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.01.032
SSID ssj0001778302
ssib044733412
ssib045327741
Score 2.2755837
Snippet In the field of autonomous mobile robots, sampling-based motion planning methods have demonstrated their efficiency in complex environments. Although the...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 7497
SubjectTerms Algorithms
Asymptotic methods
Complexity
Computational Intelligence
Data Structures and Information Theory
Efficiency
Engineering
Heuristic
Motion planning
Optimization
Original Article
Real time
Robot dynamics
Sampling
Searching
Unknown environments
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6KlIA-MWCS2EycsCBCoC1VVOlQskePYpRJNS9Mi8e85u0kLDCyMUSJb8dm-57vzewhdmAgQm9ZwLPEkJTwzPolDLYjUPDJBGFvSNic2IdrtqN-PO2XArSjLKqs90W3U2VjZGPkV8-1hxVKd3EzeiVWNstnVUkJjHW1YlgQr3dAJXqr5xLlgjK_cNw8YFZXSjIvBCGHpr6z-nB_HhLtMZmN5u45bcnkCToxYYCEI_YFCfyVOnT963P3vn-yhnRKJ4tvF1NlHazo_QNtPSxrX4hCld0PSeibdbq9_jWWOteObADeFC2kr0fMBsV4wwwstIDwpFZCwfBtAj7PXEQZMjOe5jdzlOPvM5Wio8PfLdUeo9_jQu2-RUpSBTCgVMwKAUpgsNIr5VIdgUMAsKtSSGQAOvvSY8IQShgXwSRpxWNXGMxlNlfJkBtjhGNXyca5PEA7gWUgWRwG0k8owBSSTZgCZUu0JzeM6albjl5QLq0hWg1dHl5UFVq-XJMzOdgnYLnG2S2jj79ZO0Ra1lnaFKk1Um03n-gxtqo_ZsJieu2n1Bes60Os
  priority: 102
  providerName: ProQuest
Title Bi-HS-RRTX: an efficient sampling-based motion planning algorithm for unknown dynamic environments
URI https://link.springer.com/article/10.1007/s40747-024-01557-2
https://www.proquest.com/docview/3117210146
Volume 10
WOSCitedRecordID wos001273151100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044733412
  issn: 2199-4536
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8MeNCD30YQSQ8ebbKt3bp5EwLBA2RBDuhl6bYWSXQQNvz7fS0bookHvSxp2jTL68f7vb73fg-hW-UDYpMSzBJLOISlyiaBJzkRkvnK9QJN2maKTfDRyJ9Og7BMCsuraPfKJWlu6m2yG9Nc7wR0CtF6nhO4eOuu7QeaMb_7xTnOGKeUlUrbvLRwrkmudJU5OwgIM_7K5u_TfsOaP9yjRuv0j__3vyfoqESZ-GGzLU7RnszO0OEO9yC0hlvC1vwcxZ05GTyR8Xgyvcciw9IwS4BCwrnQMefZjGh9l-JN1R-8LGsdYfE2W6zmxes7BvSL15l-o8twuqlzj3fT6C7QpN-bdAekLL9Alo7DCwLQkavUUwm1HenB0gE6STwpqAKIYAuLcosnXFEXhsQ-g_OrLJU6cZJYIgWUcIlq2SKTVwi70OaCBr4L88TCiwGzxCmAo1haXLKggVqVxKPyCOURtbV1qrltGuiukvBX95Zu2Yg5AjFHRsyR0_zb8Gt04OhFMiEqLVQrVmt5g_aTj2Ker9qo3umNwnHbbLG2sdjhG7ov0BM-DsPnT9EGzKU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL3iJQEL2vIQr1Ivyg6LxHbiBAlVbQHNCGY0orOYriInsYeRIAxkaMVH8Y9ce5KZwqI7FiyjRJade-x7_DoH4KuJkLFpjdMSTzEqcuPTONSSKi0iE4SxFW1zZhOy3Y56vbgzA0_1XRh7rLIeE91And9mdo38kPt2smKlTr4N76h1jbK7q7WFxhgW5_rxL07ZyuPmCcZ3n7Gz0-7PBq1cBeiQMTmiyIikyUOTcZ_pEGuESTcLteIGM5-vPC49mUnDA_wkjQTC0ngmZ2mWeSrH5IfFzsK8QKxjh5rvNFud3zWAhZCciylfEAFnsra2cYs-Ulq9LWt458cxFW7rdHtynU9YNXuKWZNaJiMpe0F7X-3UugR49uGd_bqPsFIxbfJ93DU-wYwuVmG5NZGpLdcg_TGgjV_08rLbOyKqINrpaWAaJqWyJ-2LPrVZPidjryMyrByeiLruYwNHVzcEOT95KOzKZEHyx0LdDDLy7-XBdei-RRs3YK64LfQmkACfpeJxFGA5qQpTZGppjpQw1Z7UIt6C3TpcSTVwlMk0VltwUAd8-noiMu2gkiBUEgeVhG3_v7QvsNjoti6Si2b7fAeWmAWZO5SzC3Oj-wf9GRayP6NBeb9XYZpA8sZQeAYPDC8V
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iInrwW9ycmoNHw_qRNq03nY6JOsbcYbeStsksuGysneB_70vWfSh4EI-hIS0vSd8vee_9fghdyQAQmxBwLLG4Q2gqbRL6ghEuaCA9P9SkbUZsgrXbQb8fdlaq-E22-zwkOatp0CxNqqiPU1lfFL5RzftOwL8Q7fMZgZ_who5I6aS-xpJ_nFLmurR04ObWhTFNeKUV5-wwJNTELqu_D_sNd_4IlRoP1Nz7_7fvo90SfeLb2XI5QGtCHaKdFU5CaL0siFzzIxTfZaT1SrrdXv8Gc4WFYZyAl-Gc61x0NSDaD6Z4pgaEx6UGEubvg9EkK96GGFAxnip9d6dw-qn4MEvwanndMeo1H3qNFillGcjYcVhBAFIymfoycW1H-DClgFoSX3BXAnSwueUyiyVMuh50iQMK-1paMnXiJLF4CujhBK2rkRKnCHvQZtwNAw_GibkfA5aJUwBNsbCYoGEF1ebWj8qtlUeurU-tmvOmgq7n1l4-XtAwGzNHYObImDlyqn_rfom2OvfN6Pmx_XSGth09XyaLpYbWi8lUnKPN5KPI8smFWXFfKyvTLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-HS-RRTX%3A+an+efficient+sampling-based+motion+planning+algorithm+for+unknown+dynamic+environments&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Liao%2C+Longjie&rft.au=Xu%2C+Qimin&rft.au=Zhou%2C+Xinyi&rft.au=Li%2C+Xu&rft.date=2024-12-01&rft.pub=Springer+International+Publishing&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=6&rft.spage=7497&rft.epage=7512&rft_id=info:doi/10.1007%2Fs40747-024-01557-2&rft.externalDocID=10_1007_s40747_024_01557_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon