Nonexistence of generalized quadrangles admitting a point-primitive and line-primitive automorphism group with socle PSU(3,q), q≥3

A central problem in the study of generalized quadrangles is to classify finite generalized quadrangles satisfying certain symmetry conditions. It is known that an automorphism group of a finite thick generalized quadrangle S acting primitively on both the points and lines of S must be almost simple...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algebraic combinatorics Ročník 60; číslo 3; s. 871 - 898
Hlavní autoři: Lu, Jianbing, Zhang, Yingnan, Zou, Hanlin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2024
Springer Nature B.V
Témata:
ISSN:0925-9899, 1572-9192
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A central problem in the study of generalized quadrangles is to classify finite generalized quadrangles satisfying certain symmetry conditions. It is known that an automorphism group of a finite thick generalized quadrangle S acting primitively on both the points and lines of S must be almost simple. In this paper, we initiate the study of finite generalized quadrangles admitting a point-primitive and line-primitive automorphism group with socle being a unitary group. We develop a group-theoretic tool to prove that the socle of such a group cannot be PSU ( 3 , q ) with q ≥ 3 .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-024-01355-6