Nonexistence of generalized quadrangles admitting a point-primitive and line-primitive automorphism group with socle PSU(3,q), q≥3
A central problem in the study of generalized quadrangles is to classify finite generalized quadrangles satisfying certain symmetry conditions. It is known that an automorphism group of a finite thick generalized quadrangle S acting primitively on both the points and lines of S must be almost simple...
Uloženo v:
| Vydáno v: | Journal of algebraic combinatorics Ročník 60; číslo 3; s. 871 - 898 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-9899, 1572-9192 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A central problem in the study of generalized quadrangles is to classify finite generalized quadrangles satisfying certain symmetry conditions. It is known that an automorphism group of a finite thick generalized quadrangle
S
acting primitively on both the points and lines of
S
must be almost simple. In this paper, we initiate the study of finite generalized quadrangles admitting a point-primitive and line-primitive automorphism group with socle being a unitary group. We develop a group-theoretic tool to prove that the socle of such a group cannot be
PSU
(
3
,
q
)
with
q
≥
3
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-9899 1572-9192 |
| DOI: | 10.1007/s10801-024-01355-6 |