Active Learning of Classification Models with Likert-Scale Feedback

Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active le...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the ... SIAM International Conference on Data Mining Ročník 2017; s. 28
Hlavní autori: Xue, Yanbing, Hauskrecht, Milos
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 2017
ISSN:2167-0102
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2167-0102
DOI:10.1137/1.9781611974973.4