Absorbed dose threshold for single-layer ZrO2, HfO2, and Al2O3 dielectric coatings at 355 nm
This study investigates ultraviolet laser-induced fatigue and absorptance dynamics in single-layer Al2O3, HfO2, and ZrO2 dielectric coatings on fused silica substrates using 355 nm, 10 ps pulses at a repetition rate of 1 MHz. Laser-induced damage threshold testing, combined with photothermal common-...
Saved in:
| Published in: | Optics letters Vol. 50; no. 16; p. 4910 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
15.08.2025
|
| ISSN: | 1539-4794, 1539-4794 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates ultraviolet laser-induced fatigue and absorptance dynamics in single-layer Al2O3, HfO2, and ZrO2 dielectric coatings on fused silica substrates using 355 nm, 10 ps pulses at a repetition rate of 1 MHz. Laser-induced damage threshold testing, combined with photothermal common-path interferometry, reveals that the formation of the "color change" damage is a multistage, cumulative process, dependent on material treatment and laser intensity. These findings offer insights into optical fatigue mechanisms and provide a pathway for non-catastrophic lifetime assessment of optical coatings based on the accumulation threshold of the absorbed dose.This study investigates ultraviolet laser-induced fatigue and absorptance dynamics in single-layer Al2O3, HfO2, and ZrO2 dielectric coatings on fused silica substrates using 355 nm, 10 ps pulses at a repetition rate of 1 MHz. Laser-induced damage threshold testing, combined with photothermal common-path interferometry, reveals that the formation of the "color change" damage is a multistage, cumulative process, dependent on material treatment and laser intensity. These findings offer insights into optical fatigue mechanisms and provide a pathway for non-catastrophic lifetime assessment of optical coatings based on the accumulation threshold of the absorbed dose. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1539-4794 1539-4794 |
| DOI: | 10.1364/OL.566304 |