Enhanced photocatalytic performance of a stable type-II PtSe2/GaSe van der Waals heterostructure

In this investigation, the structural, electronic, and optical properties of two-dimensional van der Waals heterostructure (vdwHS) PtSe2/GaSe with three different configurations have been studied using density functional theory with the generalized gradient approximation. All three optimized vdwHSs...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP Vol. 25; no. 33; p. 22258
Main Authors: Parmar, P R, Khengar, S J, Sonvane, Yogesh, Thakor, P B
Format: Journal Article
Language:English
Published: 23.08.2023
ISSN:1463-9084, 1463-9084
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this investigation, the structural, electronic, and optical properties of two-dimensional van der Waals heterostructure (vdwHS) PtSe2/GaSe with three different configurations have been studied using density functional theory with the generalized gradient approximation. All three optimized vdwHSs PtSe2/GaSe have positive phonon frequencies and hexagonal unit cells. The hybrid exchange-correlation functional has been employed to study the electronic properties of vdwHSs PtSe2/GaSe. The vdwHSs PtSe2/GaSe shows semiconducting behavior with indirect Type-II bandgaps, which have been confirmed by the charge density difference, electrostatic potential, work function, and band edge calculations. Additionally, from the band edge positions, the vdwHSs PtSe2/GaSe are analyzed for photocatalytic activities. The optical properties such as extinction coefficient, refractive index, reflectivity, energy loss spectrum, and absorption coefficient have been studied using norm-conserving pseudo-potentials. The vdwHSs PtSe2/GaSe exhibit consistent absorption from the visible to the ultraviolet region of the electromagnetic spectrum. From the obtained results, we conclude that vdwHSs PtSe2/GaSe could be utilized for H2 production through photocatalytic activity as well as for optoelectronic devices and their application.In this investigation, the structural, electronic, and optical properties of two-dimensional van der Waals heterostructure (vdwHS) PtSe2/GaSe with three different configurations have been studied using density functional theory with the generalized gradient approximation. All three optimized vdwHSs PtSe2/GaSe have positive phonon frequencies and hexagonal unit cells. The hybrid exchange-correlation functional has been employed to study the electronic properties of vdwHSs PtSe2/GaSe. The vdwHSs PtSe2/GaSe shows semiconducting behavior with indirect Type-II bandgaps, which have been confirmed by the charge density difference, electrostatic potential, work function, and band edge calculations. Additionally, from the band edge positions, the vdwHSs PtSe2/GaSe are analyzed for photocatalytic activities. The optical properties such as extinction coefficient, refractive index, reflectivity, energy loss spectrum, and absorption coefficient have been studied using norm-conserving pseudo-potentials. The vdwHSs PtSe2/GaSe exhibit consistent absorption from the visible to the ultraviolet region of the electromagnetic spectrum. From the obtained results, we conclude that vdwHSs PtSe2/GaSe could be utilized for H2 production through photocatalytic activity as well as for optoelectronic devices and their application.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9084
1463-9084
DOI:10.1039/d3cp01338c