Autodelineation of Treatment Target Volume for Radiation Therapy Using Large Language Model-Aided Multimodal Learning

Artificial intelligence-aided methods have made significant progress in the auto-delineation of normal tissues. However, these approaches struggle with the auto-contouring of radiation therapy target volume. Our goal was to model the delineation of target volume as a clinical decision-making problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics Jg. 121; H. 1; S. 230
Hauptverfasser: Rajendran, Praveenbalaji, Chen, Yizheng, Qiu, Liang, Niedermayr, Thomas, Liu, Wu, Buyyounouski, Mark, Bagshaw, Hilary, Han, Bin, Yang, Yong, Kovalchuk, Nataliya, Gu, Xuejun, Hancock, Steven, Xing, Lei, Dai, Xianjin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.01.2025
Schlagworte:
ISSN:1879-355X, 1879-355X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!