Application of hybrid machine learning algorithm in multi-objective optimization of green building energy efficiency
Green building design strives to optimize energy efficiency, emissions reduction, cost-effectiveness, and thermal comfort by accurately predicting and optimizing building performance across multiple factors. This study proposes a multiobjective prediction and optimization framework for green buildin...
Saved in:
| Published in: | Energy (Oxford) Vol. 316 p.133581- |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.02.2025
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Green building design strives to optimize energy efficiency, emissions reduction, cost-effectiveness, and thermal comfort by accurately predicting and optimizing building performance across multiple factors. This study proposes a multiobjective prediction and optimization framework for green buildings using building information modeling-Design Builder (BIM-DB), Bayesian-random Forest (Bayesian-RF), and Non-dominated Sorting Genetic Algorithm III (NSGA-III). Firstly, BIM-DB is used for building simulation and orthogonal tests to generate data samples. Secondly, Bayesian-RF model is trained on the dataset to predict building performance. Finally, the prediction model is then used to establish the fitness function for NSGA-III optimization, which identifies the optimal solution for the multiobjective green building problem. The case study of green building design of a teaching building shows that: (1) Orthogonal building simulation experiments based on BIM-DB efficiently generate building sample datasets. (2) The Bayesian-RF method improves prediction accuracy, with MSE values below 0.08 and R²above 0.85 for all three prediction objectives. (3) The Bayesian-RF-NSGA-III optimization algorithm reduces the energy consumption of the case building by 7.68 %, carbon emissions by 6.48 %, cost by 1.77 %, and improves overall thermal comfort. The framework provides a valuable reference for setting building parameters and facilitating multiobjective optimization in green building design similar to the case buildings. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0360-5442 |
| DOI: | 10.1016/j.energy.2024.133581 |