Optimality Conditions and Lagrange Dualities for Optimization Problems Involving Φc-convex Functions

In this paper, we consider an optimization problem in which the objective is the difference of two Φc-convex functions and the constraints include a set constraint and a cone constraint. We first introduce three new constraint qualifications regarding the c-subdifferential and the epigraph propertie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 207; číslo 1; s. 5
Hlavní autoři: Hu, Ling-Li, Fang, Dong-Hui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.10.2025
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider an optimization problem in which the objective is the difference of two Φc-convex functions and the constraints include a set constraint and a cone constraint. We first introduce three new constraint qualifications regarding the c-subdifferential and the epigraph properties of the involved functions. Under the new constraint qualifications, we provide some sufficient conditions for optimality conditions to hold. Similarly, strong and total Lagrange dualities for the optimization problem involving the difference of two Φc-convex functions are also given.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-025-02755-9