Optimality Conditions and Lagrange Dualities for Optimization Problems Involving Φc-convex Functions
In this paper, we consider an optimization problem in which the objective is the difference of two Φc-convex functions and the constraints include a set constraint and a cone constraint. We first introduce three new constraint qualifications regarding the c-subdifferential and the epigraph propertie...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 207; číslo 1; s. 5 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer Nature B.V
01.10.2025
|
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we consider an optimization problem in which the objective is the difference of two Φc-convex functions and the constraints include a set constraint and a cone constraint. We first introduce three new constraint qualifications regarding the c-subdifferential and the epigraph properties of the involved functions. Under the new constraint qualifications, we provide some sufficient conditions for optimality conditions to hold. Similarly, strong and total Lagrange dualities for the optimization problem involving the difference of two Φc-convex functions are also given. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-025-02755-9 |