Numerical solution of (2+1)-dimensional nonlinear sine-Gordon equation with variable coefficients by using an efficient deep learning approach

In this article, we present an efficient neural-network-based deep learning approach, physics-informed neural networks (PINNs) with regularization technique, to resolve (2+1)-dimensional nonlinear damped and undamped sine-Gordon problem with variable coefficients. We suggest a multi-objective cost f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik Jg. 76; H. 4; S. 134
Hauptverfasser: Deresse, Alemayehu Tamirie, Dufera, Tamirat Temesgen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer Nature B.V 01.08.2025
Schlagworte:
ISSN:0044-2275, 1420-9039
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we present an efficient neural-network-based deep learning approach, physics-informed neural networks (PINNs) with regularization technique, to resolve (2+1)-dimensional nonlinear damped and undamped sine-Gordon problem with variable coefficients. We suggest a multi-objective cost function that incorporates the beginning circumstances, the governing problem’s residual, and various boundary circumstances to directly incorporate physical information of the proposed initial boundary value problem into the learning process. We employed a multiple densely connected network called feed-forward deep neural networks. To further enhance the network’s robustness and adaptability capabilities, we apply two regularization approaches to the PINNs. We point out three illustrative examples to demonstrate our suggested method’s effectiveness, validity, and practical consequences. The results showed that regularized PINNs produce better outcomes than the usual PINNs. We assess the accuracy of the model based on the relative, absolute, and training errors through tables and graphs. The findings suggested that the proposed machine learning approach PINNs is efficient and accurate and can be applied to any variable coefficient problem without requiring any linearization, perturbation, or interpolation techniques and the inclusion of appropriate regularization strategies in the PINNs can improve its performance. Therefore, to solve the variable coefficient nonlinear sine-Gordon equation and other difficult nonlinear physical issues in a range of fields, the PINNs is an appropriate programming machine learning method that is both accurate and efficient.
AbstractList In this article, we present an efficient neural-network-based deep learning approach, physics-informed neural networks (PINNs) with regularization technique, to resolve (2+1)-dimensional nonlinear damped and undamped sine-Gordon problem with variable coefficients. We suggest a multi-objective cost function that incorporates the beginning circumstances, the governing problem’s residual, and various boundary circumstances to directly incorporate physical information of the proposed initial boundary value problem into the learning process. We employed a multiple densely connected network called feed-forward deep neural networks. To further enhance the network’s robustness and adaptability capabilities, we apply two regularization approaches to the PINNs. We point out three illustrative examples to demonstrate our suggested method’s effectiveness, validity, and practical consequences. The results showed that regularized PINNs produce better outcomes than the usual PINNs. We assess the accuracy of the model based on the relative, absolute, and training errors through tables and graphs. The findings suggested that the proposed machine learning approach PINNs is efficient and accurate and can be applied to any variable coefficient problem without requiring any linearization, perturbation, or interpolation techniques and the inclusion of appropriate regularization strategies in the PINNs can improve its performance. Therefore, to solve the variable coefficient nonlinear sine-Gordon equation and other difficult nonlinear physical issues in a range of fields, the PINNs is an appropriate programming machine learning method that is both accurate and efficient.
Author Deresse, Alemayehu Tamirie
Dufera, Tamirat Temesgen
Author_xml – sequence: 1
  givenname: Alemayehu Tamirie
  surname: Deresse
  fullname: Deresse, Alemayehu Tamirie
– sequence: 2
  givenname: Tamirat Temesgen
  surname: Dufera
  fullname: Dufera, Tamirat Temesgen
BookMark eNo1T8tKAzEUDVLBtvoDrgJuFInmOZNZStEqFN3ouiSZG5synUwnM4o_4TcbX4vLgfPkztCkjS0gdMroFaO0vE6UUiEI5er7mCLVAZoyySmpqKgmaEqplITzUh2hWUrbbC8ZFVP0-TjuoA_ONDjFZhxCbHH0-JxfsgtShx20KVNZzYNNaMH0OGUgy9jX2Qr70fxk3sOwwW-mD8Y2gF0E74ML0A4J2w885swrNtn_T-MaoMNN7mt_pK7ro3GbY3ToTZPg5A_n6OXu9nlxT1ZPy4fFzYp0TKuBMA219b42TlvrmXegrZMlh8K7kltdKONMLZWsgHNnS22Z9QUIrSrJikKKOTr77c2z-xHSsN7Gsc9_prXgqqiELisuvgCxuGuh
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DOI 10.1007/s00033-025-02515-9
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1420-9039
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
203
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PQQKQ
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
ID FETCH-LOGICAL-p185t-18edbffdac8bbf1fce8bc472e6fc72b865acad4549e22cb78b1bf6e3859416643
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001505173600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0044-2275
IngestDate Tue Oct 07 07:23:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p185t-18edbffdac8bbf1fce8bc472e6fc72b865acad4549e22cb78b1bf6e3859416643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256938792
PQPubID 2043593
ParticipantIDs proquest_journals_3256938792
PublicationCentury 2000
PublicationDate 20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 20250801
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Zeitschrift für angewandte Mathematik und Physik
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0007103
Score 2.4029188
Snippet In this article, we present an efficient neural-network-based deep learning approach, physics-informed neural networks (PINNs) with regularization technique,...
SourceID proquest
SourceType Aggregation Database
StartPage 134
SubjectTerms Approximation
Artificial neural networks
Boundary conditions
Boundary value problems
Cost function
Deep learning
Finite volume method
Inverse problems
Iterative methods
Machine learning
Neural networks
Numerical analysis
Parameter estimation
Partial differential equations
Physics
Regularization
Title Numerical solution of (2+1)-dimensional nonlinear sine-Gordon equation with variable coefficients by using an efficient deep learning approach
URI https://www.proquest.com/docview/3256938792
Volume 76
WOSCitedRecordID wos001505173600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-9039
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007103
  issn: 0044-2275
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKAhIcECwgHgvyARAoyqp5NfaRfcGhFARZVHGpbGdSIrbdbpKW3T_BL-THMLbjbFElBAcuUeW0eXS-ON945psh5JmMU4nAQSdHpNyPhZQ-j2Hg43OXy4RFfVCmuv4wHY3YeMw_9Ho_nRZmdZLO5-z8nC_-q6lxDI2tpbP_YO7uoDiAn9HouEWz4_avDD9a2iDMiefOowkhEsnwebiH8xb3c13R31bj8Oa2VIaoPJ0A779BXxR_AGe2Arhdpl2hP20UVuoUTMUJo4pD3rqsrcTR64a9HGDhWlFMu4rl6xT4C5QNutRVWTReoeP0e_s6j3MK34WWFnjvXCHZb7pHr2nOU3ZyogMwxc5bac5MXMDXpZeJWVmVHUIPlgWY7kl2h2i8DGZQT1vRW7vEESZdgt3vS5w6f1tHVToJjp3S49gPQ9t-ZRfsLB6jT8z7tkqSm-Ztm5kWzvHanB3Y1dSNd4lNH9F1tiId6tZCdiR_Pr98c7psgdH7ydHxcDjJDsfZi8WZr3ua6dh_2-DlCrmK18d1wuHHT587noDcrs1_sDfQSrqMsHPjpBtUwfCf7Da51Tou9LUF3B3Sg_k2udkZS9Xb5Lqxlarvkh8dCKkDIT0t6MvQC16tw4928KNr8KMOflTDjzr40XX4UXlBDfyowO-7YarhRx38qIPfPXJ8dJjtv_Xbzh_-Avlj4wcMclkUuVBMyiIoFDCp4jQErUwLJRskQok8TmIOYahkymQgiwFELOHoYCDJvk-28AbgAaE60KgkHlDieC6ARWkUJACDHLm8Yv2HZMf9sZP2Ka4nEToCPGIpDx_9efdjcuMSsDtkq6mW8IRcU6umrKunxt6_AJu7nq8
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+%282%2B1%29-dimensional+nonlinear+sine-Gordon+equation+with+variable+coefficients+by+using+an+efficient+deep+learning+approach&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Deresse%2C+Alemayehu+Tamirie&rft.au=Dufera%2C+Tamirat+Temesgen&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=76&rft.issue=4&rft.spage=134&rft_id=info:doi/10.1007%2Fs00033-025-02515-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon