Survey of fuzzy clustering algorithms for pattern recognition - Part I

Clustering algorithms aim at modeling fuzzy (i.e., ambiguous) unlabeled patterns efficiently. Our goal is to propose a theoretical framework where the expressive power of clustering systems can be compared on the basis of a meaningful set of common functional features. Part I of this paper reviews t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Ročník 29; číslo 6; s. 778 - 785
Hlavní autoři: Baraldi, Andrea, Blonda, Palma
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.12.1999
ISSN:1083-4419
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering algorithms aim at modeling fuzzy (i.e., ambiguous) unlabeled patterns efficiently. Our goal is to propose a theoretical framework where the expressive power of clustering systems can be compared on the basis of a meaningful set of common functional features. Part I of this paper reviews the following issues related to clustering approaches found in the literature: relative (probabilistic) and absolute (possibilistic) fuzzy membership functions and their relationships to the Bayes rule, batch and on-line learning, prototype editing schemes, growing and pruning networks, modular network architectures, topologically perfect mapping, ecological nets and neuro-fuzziness. From this discussion an equivalence between the concepts of fuzzy clustering and soft competitive learning in clustering algorithms is proposed as a unifying framework in the comparison of clustering systems. Moreover, a set of functional attributes is selected for use as dictionary entries in the comparison of clustering algorithms, which is the subject of Part II of this paper.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1083-4419
DOI:10.1109/3477.809032