Multi-Task Learning Using Attention-Based Convolutional Encoder-Decoder for Dilated Cardiomyopathy CMR Segmentation and Classification

Myocardial segmentation and classification play a major role in the diagnosis of cardiovascular disease. Dilated Cardiomyopathy (DCM) is a kind of common chronic and life-threatening cardiopathy. Early diagnostics significantly increases the chances of correct treatment and survival. However, accura...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers, materials & continua Ročník 63; číslo 2; s. 995
Hlavní autori: Luo, Chao, Shi, Canghong, Li, Xiaojie, Wang, Xin, Chen, Yucheng, Gao, Dongrui, Yin, Youbing, Song, Qi, Wu, Xi, Zhou, Jiliu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Henderson Tech Science Press 01.01.2020
Predmet:
ISSN:1546-2218, 1546-2226
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Myocardial segmentation and classification play a major role in the diagnosis of cardiovascular disease. Dilated Cardiomyopathy (DCM) is a kind of common chronic and life-threatening cardiopathy. Early diagnostics significantly increases the chances of correct treatment and survival. However, accurate and rapid diagnosis of DCM is still challenge due to high variability of cardiac structure, low contrast cardiac magnetic resonance (CMR) images, and intrinsic noise in synthetic CMR images caused by motion artifact and cardiac dynamics. Moreover, visual assessment and empirical evaluation are widely used in routine clinical diagnosis, but they are subject to high inter-observer variability and are both subjective and non-reproducible. To solve this problem, we proposed an effective unified multi-task framework for dilated cardiomyopathy CMR segmentation and classification simultaneously, and we firstly update one independent encoder from both recovery decoder and parallel attention path sharing some partial weights. This can encode both task choices into good embedding, but each one can achieve significant improvements respectively from the given embedding. It consists of three branches: extraction path, attention path, and recovery path, which allows the model to learn more higher-level intermediate representations and makes a more accurate prediction. We validated our approach on a DCM dataset, which contains 1155 CMR LGE images. Experimental results show that our multi-task network has achieved accuracy of 97.63%, AUC of 98.32%, demonstrating effectively segmenting the myocardium, quickly and accurately diagnosing the presence or absence of dilation.
AbstractList Myocardial segmentation and classification play a major role in the diagnosis of cardiovascular disease. Dilated Cardiomyopathy (DCM) is a kind of common chronic and life-threatening cardiopathy. Early diagnostics significantly increases the chances of correct treatment and survival. However, accurate and rapid diagnosis of DCM is still challenge due to high variability of cardiac structure, low contrast cardiac magnetic resonance (CMR) images, and intrinsic noise in synthetic CMR images caused by motion artifact and cardiac dynamics. Moreover, visual assessment and empirical evaluation are widely used in routine clinical diagnosis, but they are subject to high inter-observer variability and are both subjective and non-reproducible. To solve this problem, we proposed an effective unified multi-task framework for dilated cardiomyopathy CMR segmentation and classification simultaneously, and we firstly update one independent encoder from both recovery decoder and parallel attention path sharing some partial weights. This can encode both task choices into good embedding, but each one can achieve significant improvements respectively from the given embedding. It consists of three branches: extraction path, attention path, and recovery path, which allows the model to learn more higher-level intermediate representations and makes a more accurate prediction. We validated our approach on a DCM dataset, which contains 1155 CMR LGE images. Experimental results show that our multi-task network has achieved accuracy of 97.63%, AUC of 98.32%, demonstrating effectively segmenting the myocardium, quickly and accurately diagnosing the presence or absence of dilation.
Author Shi, Canghong
Zhou, Jiliu
Gao, Dongrui
Wang, Xin
Chen, Yucheng
Yin, Youbing
Wu, Xi
Luo, Chao
Song, Qi
Li, Xiaojie
Author_xml – sequence: 1
  givenname: Chao
  surname: Luo
  fullname: Luo, Chao
– sequence: 2
  givenname: Canghong
  surname: Shi
  fullname: Shi, Canghong
– sequence: 3
  givenname: Xiaojie
  surname: Li
  fullname: Li, Xiaojie
– sequence: 4
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
– sequence: 5
  givenname: Yucheng
  surname: Chen
  fullname: Chen, Yucheng
– sequence: 6
  givenname: Dongrui
  surname: Gao
  fullname: Gao, Dongrui
– sequence: 7
  givenname: Youbing
  surname: Yin
  fullname: Yin, Youbing
– sequence: 8
  givenname: Qi
  surname: Song
  fullname: Song, Qi
– sequence: 9
  givenname: Xi
  surname: Wu
  fullname: Wu, Xi
– sequence: 10
  givenname: Jiliu
  surname: Zhou
  fullname: Zhou, Jiliu
BookMark eNo9T8tOAjEAbAwmAnr22sTzYrcvtkdcQE0gJgpn0u0Di0uL264JP-B3y6LxMjOZzEwyA9DzwRsAbnM0Ipgjeq_2aoQRRiM0Fry4AP2cUZ5hjHnvX-fFFRjEuEOIcCJQH3wv2zq5bCXjB1wY2Xjnt3AdO5ykZHxywWcPMhoNy-C_Qt12jqzhzKugTZNNzZmhDQ2culqmLikb7cL-GA4yvR9huXyFb2a7P63Jrg2lP2VqGaOzTp2ta3BpZR3NzR8PwXo-W5VP2eLl8bmcLLJDXpCUWUqQlaZguqqQILRSmo-ZYpjLqhIo55oKTbkxmpmCK1bY3IoiHytkNRPSkiG4-909NOGzNTFtdqFtTn_iBhNBBUOMMPIDl0poCQ
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2020.07968
DatabaseName Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
GroupedDBID 7SC
7SR
8BQ
8FD
AAFWJ
ABUWG
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
CCPQU
DWQXO
EBS
EJD
J9A
JG9
JQ2
L7M
L~C
L~D
OK1
P2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RTS
TUS
ID FETCH-LOGICAL-p183t-f430fae85dbb0934bcd675c526abb9016d49d46eed5e86c58f1f9817c0fd59af3
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527105300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2218
IngestDate Sun Nov 09 08:24:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p183t-f430fae85dbb0934bcd675c526abb9016d49d46eed5e86c58f1f9817c0fd59af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2394950535?pq-origsite=%requestingapplication%
PQID 2394950535
PQPubID 2048737
ParticipantIDs proquest_journals_2394950535
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2020
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
SSID ssj0036390
Score 2.2312727
Snippet Myocardial segmentation and classification play a major role in the diagnosis of cardiovascular disease. Dilated Cardiomyopathy (DCM) is a kind of common...
SourceID proquest
SourceType Aggregation Database
StartPage 995
SubjectTerms Cardiomyopathy
Classification
Coders
Diagnosis
Embedding
Encoders-Decoders
Image contrast
Image segmentation
Magnetic resonance
Medical imaging
Myocardium
Recovery
Title Multi-Task Learning Using Attention-Based Convolutional Encoder-Decoder for Dilated Cardiomyopathy CMR Segmentation and Classification
URI https://www.proquest.com/docview/2394950535
Volume 63
WOSCitedRecordID wos000527105300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2218
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2218
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnuItD6yGOLEde0JQimCgqnhIMCG_ghA0hTYg8Qf43ZxdVwxILExWEiuKnPN9Xy539yG0X2qqqdCUCM8dYaXwxCiuiaqMZUY6U0gXxSbKXk_e3al-CriNU1rl1CdGR-2GNsTID4OEt-KhG8nR6xsJqlHh72qS0JhFc6FTGdj53Em317-a-uIC8DeWRHImSA5oNmnuA5QlY4d2EFoY5tlBViohf_niCDBn7f8-2hJaTNQSH09sYRnN-HoFtaeyDTjt4lX0FYtuyY0eP-PUXvURx9QBfNw0k_RHcgLo5nBnWH8k24Q7d-tQAD8ipz6OGPguPn16AbYKM2Ne6-BzGCSOP3Hn8gpf-8dBqmyqsa5hTmDqITUpnlpDt2fdm845SXIM5BX2fUMqVmSV9pI7YzJVMGMdfG1YngttDNAK4ZhyTADoci-F5bKilZK0tFnluNJVsY5a9bD2GwgDXBa60Lbg1LAyo6aCQ0pLk4NB6Vxuop3pSj-kPTV--Fnmrb8vb6OF8F4ngZId1GpG734XzduP5mk82ksmAmP_4rJ__w1SUcsx
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJcWl4VlAI-wNE0TmzHOSBUdlt11e5qBYtUTotfqSrYbNkNRfsH-Dn9jR07iTggceuBU5TE8sHzeR72zHwAr3PNNJOaUemFozyXnppCaFqUxnKjnMmUi2QT-Xiszs6KyQZcd7UwIa2y04lRUbuFDWfk-4HCuxChG8n7yx80sEaF29WOQqOBxYlf_8KQbfVuOED5vknTo8Np_5i2rAL0EuFb05JnSam9Es4YDOe5sQ6dZitSqY1B6ygdLxyXaDuEV9IKVbKyUCy3SelEocsM570DmzyAvQebk-Fo8qXT_Rna-1iCKbikKVrPppkQukgJ37fz0DIxTd4meSHVX7o_GrSj7f9tKR7AVus6k4MG6w9hw1ePYLujpSCtlnoMv2NRMZ3q1TfSto89JzE1ghzUdZPeST-g9Xakv6iu2r2HMx9WocB_SQc-Pgn682Rw8R29cRwZ83bn60WgcF6T_ugj-eTP523lVkV0hWNCJBJSr-KnJ_D5VlZjB3rVovJPgaA7kOlM20www_OEmRJfGctNihtGp-oZ7HWSnbU6YzX7I9bdf_9-BfeOp6PT2elwfPIc7gdMNYdCe9Crlz_9C7hrr-qL1fJlC08CX28bBjdAhSkG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Task+Learning+Using+Attention-Based+Convolutional+Encoder-Decoder+for+Dilated+Cardiomyopathy+CMR+Segmentation+and+Classification&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Luo%2C+Chao&rft.au=Shi%2C+Canghong&rft.au=Li%2C+Xiaojie&rft.au=Wang%2C+Xin&rft.date=2020-01-01&rft.pub=Tech+Science+Press&rft.issn=1546-2218&rft.eissn=1546-2226&rft.volume=63&rft.issue=2&rft.spage=995&rft_id=info:doi/10.32604%2Fcmc.2020.07968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2218&client=summon