Subexponential-Time Algorithms for Maximum Independent Set in P t -Free and Broom-Free Graphs

In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt-free graphs, that is, on graphs not containing any induced path on t vertices. So far, polynomial-time algorithms are known only for t≤5 (Lokshtanov et al., in: Proceeding...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 81; číslo 2; s. 421 - 438
Hlavní autori: Bacsó, Gábor, Lokshtanov, Daniel, Marx, Dániel, Pilipczuk, Marcin, Tuza, Zsolt, van Leeuwen, Erik Jan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer Nature B.V 15.02.2019
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt-free graphs, that is, on graphs not containing any induced path on t vertices. So far, polynomial-time algorithms are known only for t≤5 (Lokshtanov et al., in: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, SODA 2014, Portland, OR, USA, January 5–7, 2014, pp 570–581, 2014), and an algorithm for t=6 announced recently (Grzesik et al. in Polynomial-time algorithm for maximum weight independent set on P6-free graphs. CoRR, arXiv:1707.05491, 2017). Here we study the existence of subexponential-time algorithms for the problem: we show that for any t≥1, there is an algorithm for Maximum Independent Set on Pt-free graphs whose running time is subexponential in the number of vertices. Even for the weighted version MWIS, the problem is solvable in 2O(tnlogn) time on Pt-free graphs. For approximation of MIS in broom-free graphs, a similar time bound is proved. Scattered Set is the generalization of Maximum Independent Set where the vertices of the solution are required to be at distance at least d from each other. We give a complete characterization of those graphs H for which d-Scattered Set on H-free graphs can be solved in time subexponential in the size of the input (that is, in the number of vertices plus the number of edges):If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices and m edges can be solved in time 2O(|V(H)|n+mlog(n+m)), even if d is part of the input.Otherwise, assuming the Exponential-Time Hypothesis (ETH), there is no 2o(n+m)-time algorithm for d-Scattered Set for any fixed d≥3 on H-free graphs with n-vertices and m-edges.
AbstractList In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt-free graphs, that is, on graphs not containing any induced path on t vertices. So far, polynomial-time algorithms are known only for t≤5 (Lokshtanov et al., in: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, SODA 2014, Portland, OR, USA, January 5–7, 2014, pp 570–581, 2014), and an algorithm for t=6 announced recently (Grzesik et al. in Polynomial-time algorithm for maximum weight independent set on P6-free graphs. CoRR, arXiv:1707.05491, 2017). Here we study the existence of subexponential-time algorithms for the problem: we show that for any t≥1, there is an algorithm for Maximum Independent Set on Pt-free graphs whose running time is subexponential in the number of vertices. Even for the weighted version MWIS, the problem is solvable in 2O(tnlogn) time on Pt-free graphs. For approximation of MIS in broom-free graphs, a similar time bound is proved. Scattered Set is the generalization of Maximum Independent Set where the vertices of the solution are required to be at distance at least d from each other. We give a complete characterization of those graphs H for which d-Scattered Set on H-free graphs can be solved in time subexponential in the size of the input (that is, in the number of vertices plus the number of edges):If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices and m edges can be solved in time 2O(|V(H)|n+mlog(n+m)), even if d is part of the input.Otherwise, assuming the Exponential-Time Hypothesis (ETH), there is no 2o(n+m)-time algorithm for d-Scattered Set for any fixed d≥3 on H-free graphs with n-vertices and m-edges.
Author Lokshtanov, Daniel
Pilipczuk, Marcin
van Leeuwen, Erik Jan
Tuza, Zsolt
Marx, Dániel
Bacsó, Gábor
Author_xml – sequence: 1
  givenname: Gábor
  surname: Bacsó
  fullname: Bacsó, Gábor
– sequence: 2
  givenname: Daniel
  surname: Lokshtanov
  fullname: Lokshtanov, Daniel
– sequence: 3
  givenname: Dániel
  surname: Marx
  fullname: Marx, Dániel
– sequence: 4
  givenname: Marcin
  surname: Pilipczuk
  fullname: Pilipczuk, Marcin
– sequence: 5
  givenname: Zsolt
  surname: Tuza
  fullname: Tuza, Zsolt
– sequence: 6
  givenname: Erik
  surname: van Leeuwen
  middlename: Jan
  fullname: van Leeuwen, Erik Jan
BookMark eNotjc1KAzEYRYMo2FYfwF3AdfTL_8yyFlsLFYXWpZTMTGKndJIxyUAf34G6OffezblTdO2Dtwg9UHiiAPo5AQjJCdCCgNAlkVdoQgVnBKSg12gCVBdEKKpv0TSlIwBlulQT9L0dKnvuR5nPrTmRXdtZPD_9hNjmQ5ewCxG_m3PbDR1e-8b2doTPeGszbj3-xBmTZbQWG9_glxhCd5mraPpDukM3zpySvf_PGfpavu4Wb2TzsVov5hvS04JnwmrlHHM1U43Tsh4pDK1UU0IlgdY1dcxqowEqXjlplbJcjs0UtZDaMM1n6PHi7WP4HWzK-2MYoh8v94xqXTIuC83_AIqiV6E
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Copyright Springer Nature B.V. 2019
DBID JQ2
DOI 10.1007/s00453-018-0479-5
DatabaseName ProQuest Computer Science Collection
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 438
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JQ2
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
ID FETCH-LOGICAL-p183t-2c6ff2fc26df75c6df4a1b6d90b501cc1f2e7a700b3bf5e66e353bfa8c457a273
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458280100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:26:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-2c6ff2fc26df75c6df4a1b6d90b501cc1f2e7a700b3bf5e66e353bfa8c457a273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2177923587
PQPubID 2043795
PageCount 18
ParticipantIDs proquest_journals_2177923587
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationYear 2019
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0012796
Score 2.4060726
Snippet In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt-free graphs, that is, on...
SourceID proquest
SourceType Aggregation Database
StartPage 421
SubjectTerms Algorithms
Apexes
Graph theory
Graphs
Polynomials
Run time (computers)
Weight
Title Subexponential-Time Algorithms for Maximum Independent Set in P t -Free and Broom-Free Graphs
URI https://www.proquest.com/docview/2177923587
Volume 81
WOSCitedRecordID wos000458280100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELbwTLgnxAXCqjxInt5LiFLRxKqaC76gVVjmuz1XbTbptWFf-L_8c4dh6rRQgOXKw0UZO283VmPDPfDEKvRWzAqsUZEUZQEmsjSSZTSmjEIy5UmAVltcXZQAyHyWSSjjqdnxUXZrcQeZ7s9-nqv4oazoGwLXX2H8Rd3xROwDEIHVYQO6x_JXhQBXq_Wua2DEguiOV4dI8X35freXHuui90P8n9_HJ7CcqhmoFbgNIohwWMukWX9NfaZRV61q92Lz_Yztabti9b37RV7tOTamNz772oDLiXafgwW9YVwIPlxeYc_NHlruG3N0HxdWkJ37t3tS-NbNRH_dheeHqR8v3CfbjCMqQocYTNa-FKW4ttMyQ1ncZFN2FLG3NH5nyrnUaOI0rArwzbKttNefHQpC39Gzu6tTflsWscc8NKuMIQ20eW2WKyhNg--4Q1JrEqAxh-nvZPB4Pp-GQyfrO6InZYmU3q-8ktt9BtKlhq7cGXr2d18oqKcixc_W2qZHrgetdee-YNF6D0a8YP0D2_IcHHDkgPUUfnj9D9atgH9rr_Mfr2G1zhBlcYcIU9rnALVxhwhec5HuECl0DCgCvc4Ao7XD1Bp_2T8buPxM_mICswAgWhihtDjaJ8ZgRTsMYyzPgsDTIWhEqFhmohRRBkUWaY5lxHDI5komImJPjMT9FBDh_5GcJMRjyVEUu4CeIMIBMZEc4iPUvBF800f46Oqp9o6v9nmynspG3nS5aIwz9ffoHuNjA8QgfFeqtfojtqV8w361el4H4BNzN1yA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subexponential-Time+Algorithms+for+Maximum+Independent+Set+in+P+t+-Free+and+Broom-Free+Graphs&rft.jtitle=Algorithmica&rft.au=Bacs%C3%B3%2C+G%C3%A1bor&rft.au=Lokshtanov%2C+Daniel&rft.au=Marx%2C+D%C3%A1niel&rft.au=Pilipczuk%2C+Marcin&rft.date=2019-02-15&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.issue=2&rft.spage=421&rft.epage=438&rft_id=info:doi/10.1007%2Fs00453-018-0479-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon