Subexponential-Time Algorithms for Maximum Independent Set in P t -Free and Broom-Free Graphs
In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt-free graphs, that is, on graphs not containing any induced path on t vertices. So far, polynomial-time algorithms are known only for t≤5 (Lokshtanov et al., in: Proceeding...
Uložené v:
| Vydané v: | Algorithmica Ročník 81; číslo 2; s. 421 - 438 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer Nature B.V
15.02.2019
|
| Predmet: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt-free graphs, that is, on graphs not containing any induced path on t vertices. So far, polynomial-time algorithms are known only for t≤5 (Lokshtanov et al., in: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, SODA 2014, Portland, OR, USA, January 5–7, 2014, pp 570–581, 2014), and an algorithm for t=6 announced recently (Grzesik et al. in Polynomial-time algorithm for maximum weight independent set on P6-free graphs. CoRR, arXiv:1707.05491, 2017). Here we study the existence of subexponential-time algorithms for the problem: we show that for any t≥1, there is an algorithm for Maximum Independent Set on Pt-free graphs whose running time is subexponential in the number of vertices. Even for the weighted version MWIS, the problem is solvable in 2O(tnlogn) time on Pt-free graphs. For approximation of MIS in broom-free graphs, a similar time bound is proved. Scattered Set is the generalization of Maximum Independent Set where the vertices of the solution are required to be at distance at least d from each other. We give a complete characterization of those graphs H for which d-Scattered Set on H-free graphs can be solved in time subexponential in the size of the input (that is, in the number of vertices plus the number of edges):If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices and m edges can be solved in time 2O(|V(H)|n+mlog(n+m)), even if d is part of the input.Otherwise, assuming the Exponential-Time Hypothesis (ETH), there is no 2o(n+m)-time algorithm for d-Scattered Set for any fixed d≥3 on H-free graphs with n-vertices and m-edges. |
|---|---|
| AbstractList | In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt-free graphs, that is, on graphs not containing any induced path on t vertices. So far, polynomial-time algorithms are known only for t≤5 (Lokshtanov et al., in: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, SODA 2014, Portland, OR, USA, January 5–7, 2014, pp 570–581, 2014), and an algorithm for t=6 announced recently (Grzesik et al. in Polynomial-time algorithm for maximum weight independent set on P6-free graphs. CoRR, arXiv:1707.05491, 2017). Here we study the existence of subexponential-time algorithms for the problem: we show that for any t≥1, there is an algorithm for Maximum Independent Set on Pt-free graphs whose running time is subexponential in the number of vertices. Even for the weighted version MWIS, the problem is solvable in 2O(tnlogn) time on Pt-free graphs. For approximation of MIS in broom-free graphs, a similar time bound is proved. Scattered Set is the generalization of Maximum Independent Set where the vertices of the solution are required to be at distance at least d from each other. We give a complete characterization of those graphs H for which d-Scattered Set on H-free graphs can be solved in time subexponential in the size of the input (that is, in the number of vertices plus the number of edges):If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices and m edges can be solved in time 2O(|V(H)|n+mlog(n+m)), even if d is part of the input.Otherwise, assuming the Exponential-Time Hypothesis (ETH), there is no 2o(n+m)-time algorithm for d-Scattered Set for any fixed d≥3 on H-free graphs with n-vertices and m-edges. |
| Author | Lokshtanov, Daniel Pilipczuk, Marcin van Leeuwen, Erik Jan Tuza, Zsolt Marx, Dániel Bacsó, Gábor |
| Author_xml | – sequence: 1 givenname: Gábor surname: Bacsó fullname: Bacsó, Gábor – sequence: 2 givenname: Daniel surname: Lokshtanov fullname: Lokshtanov, Daniel – sequence: 3 givenname: Dániel surname: Marx fullname: Marx, Dániel – sequence: 4 givenname: Marcin surname: Pilipczuk fullname: Pilipczuk, Marcin – sequence: 5 givenname: Zsolt surname: Tuza fullname: Tuza, Zsolt – sequence: 6 givenname: Erik surname: van Leeuwen middlename: Jan fullname: van Leeuwen, Erik Jan |
| BookMark | eNotjc1KAzEYRYMo2FYfwF3AdfTL_8yyFlsLFYXWpZTMTGKndJIxyUAf34G6OffezblTdO2Dtwg9UHiiAPo5AQjJCdCCgNAlkVdoQgVnBKSg12gCVBdEKKpv0TSlIwBlulQT9L0dKnvuR5nPrTmRXdtZPD_9hNjmQ5ewCxG_m3PbDR1e-8b2doTPeGszbj3-xBmTZbQWG9_glxhCd5mraPpDukM3zpySvf_PGfpavu4Wb2TzsVov5hvS04JnwmrlHHM1U43Tsh4pDK1UU0IlgdY1dcxqowEqXjlplbJcjs0UtZDaMM1n6PHi7WP4HWzK-2MYoh8v94xqXTIuC83_AIqiV6E |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. 2019 |
| DBID | JQ2 |
| DOI | 10.1007/s00453-018-0479-5 |
| DatabaseName | ProQuest Computer Science Collection |
| DatabaseTitle | ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 438 |
| GroupedDBID | -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JQ2 JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX |
| ID | FETCH-LOGICAL-p183t-2c6ff2fc26df75c6df4a1b6d90b501cc1f2e7a700b3bf5e66e353bfa8c457a273 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458280100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Thu Oct 02 16:26:51 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p183t-2c6ff2fc26df75c6df4a1b6d90b501cc1f2e7a700b3bf5e66e353bfa8c457a273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2177923587 |
| PQPubID | 2043795 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2177923587 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-15 |
| PublicationDateYYYYMMDD | 2019-02-15 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationYear | 2019 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| SSID | ssj0012796 |
| Score | 2.4060726 |
| Snippet | In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt-free graphs, that is, on... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 421 |
| SubjectTerms | Algorithms Apexes Graph theory Graphs Polynomials Run time (computers) Weight |
| Title | Subexponential-Time Algorithms for Maximum Independent Set in P t -Free and Broom-Free Graphs |
| URI | https://www.proquest.com/docview/2177923587 |
| Volume | 81 |
| WOSCitedRecordID | wos000458280100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwoELbwTLgnxAXCqjxInt5LiFLRxKqaC76gVVjmuz1XbTbptWFf-L_8c4dh6rRQgOXKw0UZO283VmPDPfDEKvRWzAqsUZEUZQEmsjSSZTSmjEIy5UmAVltcXZQAyHyWSSjjqdnxUXZrcQeZ7s9-nqv4oazoGwLXX2H8Rd3xROwDEIHVYQO6x_JXhQBXq_Wua2DEguiOV4dI8X35freXHuui90P8n9_HJ7CcqhmoFbgNIohwWMukWX9NfaZRV61q92Lz_Yztabti9b37RV7tOTamNz772oDLiXafgwW9YVwIPlxeYc_NHlruG3N0HxdWkJ37t3tS-NbNRH_dheeHqR8v3CfbjCMqQocYTNa-FKW4ttMyQ1ncZFN2FLG3NH5nyrnUaOI0rArwzbKttNefHQpC39Gzu6tTflsWscc8NKuMIQ20eW2WKyhNg--4Q1JrEqAxh-nvZPB4Pp-GQyfrO6InZYmU3q-8ktt9BtKlhq7cGXr2d18oqKcixc_W2qZHrgetdee-YNF6D0a8YP0D2_IcHHDkgPUUfnj9D9atgH9rr_Mfr2G1zhBlcYcIU9rnALVxhwhec5HuECl0DCgCvc4Ao7XD1Bp_2T8buPxM_mICswAgWhihtDjaJ8ZgRTsMYyzPgsDTIWhEqFhmohRRBkUWaY5lxHDI5komImJPjMT9FBDh_5GcJMRjyVEUu4CeIMIBMZEc4iPUvBF800f46Oqp9o6v9nmynspG3nS5aIwz9ffoHuNjA8QgfFeqtfojtqV8w361el4H4BNzN1yA |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subexponential-Time+Algorithms+for+Maximum+Independent+Set+in+P+t+-Free+and+Broom-Free+Graphs&rft.jtitle=Algorithmica&rft.au=Bacs%C3%B3%2C+G%C3%A1bor&rft.au=Lokshtanov%2C+Daniel&rft.au=Marx%2C+D%C3%A1niel&rft.au=Pilipczuk%2C+Marcin&rft.date=2019-02-15&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.issue=2&rft.spage=421&rft.epage=438&rft_id=info:doi/10.1007%2Fs00453-018-0479-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |