On ε-phase-isometries between the positive cones of continuous function spaces

Let K and T be compact Hausdorff spaces, C+(K)={f∈C(K):f(k)≥0forallk∈K} be the positive cone of C(K). In this paper, we prove that if K is a compact Hausdorff perfectly normal space, then for every ε-phase-isometry F:C+(K)→C+(T), there are nonempty closed subset S⊂T and an additive isometry V:C+(K)→...

Full description

Saved in:
Bibliographic Details
Published in:Indian journal of pure and applied mathematics Vol. 56; no. 2; pp. 728 - 736
Main Authors: Wang, Wenting, An, Aimin
Format: Journal Article
Language:English
Published: Heidelberg Springer Nature B.V 01.06.2025
Subjects:
ISSN:0019-5588, 0975-7465
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let K and T be compact Hausdorff spaces, C+(K)={f∈C(K):f(k)≥0forallk∈K} be the positive cone of C(K). In this paper, we prove that if K is a compact Hausdorff perfectly normal space, then for every ε-phase-isometry F:C+(K)→C+(T), there are nonempty closed subset S⊂T and an additive isometry V:C+(K)→C+(S) defined as V(f)=limn→∞F(2nf)|S2n for each f∈C+(K) satisfying that ‖F(f)|S-V(f)‖≤32ε,forallf∈C+(K).Moreover, if F is almost surjective, then there exists a unique homeomorphism γ:T→K such that |F(f)(t)-f(γ(t))|≤32ε,t∈T,f∈C+(K).
AbstractList Let K and T be compact Hausdorff spaces, C+(K)={f∈C(K):f(k)≥0forallk∈K} be the positive cone of C(K). In this paper, we prove that if K is a compact Hausdorff perfectly normal space, then for every ε-phase-isometry F:C+(K)→C+(T), there are nonempty closed subset S⊂T and an additive isometry V:C+(K)→C+(S) defined as V(f)=limn→∞F(2nf)|S2n for each f∈C+(K) satisfying that ‖F(f)|S-V(f)‖≤32ε,forallf∈C+(K).Moreover, if F is almost surjective, then there exists a unique homeomorphism γ:T→K such that |F(f)(t)-f(γ(t))|≤32ε,t∈T,f∈C+(K).
Author An, Aimin
Wang, Wenting
Author_xml – sequence: 1
  givenname: Wenting
  surname: Wang
  fullname: Wang, Wenting
– sequence: 2
  givenname: Aimin
  surname: An
  fullname: An, Aimin
BookMark eNotj81KAzEUhYNUsK2-gKuA6-hNMpkkSyn-QaEbXZdkvKFTNBl7M4oP5mv4TI7o6nycxfk4CzbLJSNj5xIuJYC9IqmVagUoLQCMbMTnEZuDt0bYpjWziUF6YYxzJ2xBtAdoNXg_Z5tN5t9fYtgFQtFTecV66JF4xPqBmHndIR8K9bV_R95NUuIl_ULt81hG4mnMXe1L5jSEDumUHafwQnj2n0v2dHvzuLoX683dw-p6LQbpdBWqwWh9k1qvfNAxBmdU8jFMByTGLlmZvLEBXUxNcs2zkp2zClIrp1pB0Et28bc7HMrbiFS3-zIe8qTcamWMVM7oVv8AGUtUkg
ContentType Journal Article
Copyright The Indian National Science Academy 2023.
Copyright_xml – notice: The Indian National Science Academy 2023.
DOI 10.1007/s13226-023-00514-y
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 0975-7465
EndPage 736
GroupedDBID -~X
06D
0R~
0VY
199
1N0
203
2JN
2KG
2LR
30V
4.4
406
408
40D
5GY
67Z
8UJ
95.
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
AAZMS
ABAKF
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FERAY
FIGPU
FNLPD
FRRFC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HF~
HMJXF
HRMNR
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
M~E
N9A
NPVJJ
NQJWS
NU0
O93
O9J
OK1
P2P
P9R
PT4
R9I
ROL
RSV
S1Z
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
ID FETCH-LOGICAL-p183t-24eb794f6929a3bba852f9ba0231ebcf71f957ae8bf4f84d21c8720f6195720a3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001109999800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-5588
IngestDate Mon Sep 29 04:23:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-24eb794f6929a3bba852f9ba0231ebcf71f957ae8bf4f84d21c8720f6195720a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255128536
PQPubID 2044203
PageCount 9
ParticipantIDs proquest_journals_3255128536
PublicationCentury 2000
PublicationDate 20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 20250601
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Indian journal of pure and applied mathematics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0063099
Score 2.3604143
Snippet Let K and T be compact Hausdorff spaces, C+(K)={f∈C(K):f(k)≥0forallk∈K} be the positive cone of C(K). In this paper, we prove that if K is a compact Hausdorff...
SourceID proquest
SourceType Aggregation Database
StartPage 728
SubjectTerms Banach spaces
Function space
Mathematical functions
Mathematicians
Title On ε-phase-isometries between the positive cones of continuous function spaces
URI https://www.proquest.com/docview/3255128536
Volume 56
WOSCitedRecordID wos001109999800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 0975-7465
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063099
  issn: 0019-5588
  databaseCode: M~E
  dateStart: 19700101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0975-7465
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063099
  issn: 0019-5588
  databaseCode: RSV
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZC6QEOFVBQoaXygXIzynrj9fpYqlQcQoJo2uYWrb22CGq3S5NG7QvwRrwGz8T4bzclEoIDl83KidbazKf58zczCL3hpRQq4xkxkqfEHsQRSaUivCxLpsHgJo7yfzbgw2E-mYhPnc73WAuzvOBVld_eivq_ihrWQNi2dPYfxN08FBbgHoQOVxA7XP9K8CMQ51H_4D0j9RcwUWQ2v7p0Y7PmDSnLlUc5ttbSkdV941nLWp9VN5YTa62dAwboGxVYhl8j5901M1jpOFHHM4gieLSXTSvYxmE_D2npc-0mU7TJB6eb7GSx1fQDZS1N6l760XKr7W5NeYxXt4kgjPm5fe90yDtyRnjPD4iIKtj3Fg9Qoyv6lIfKcW-afZXCutbvhipoUE6WUZ0S19Wd3LU2Lp7rD0fT49PBYDruT8Zv62_ETh-zp_RhFMsD9JByJiw18PPJWbToWdoVPowKrxOKr3wJ5u-brhl156mMn6CtEGLgQw-Np6ijq2fo8cdWKNtoNKrwzx9rAMEBIBh-iiNAsAMIvjK4BQiOAMEeIM_R6XF_fPSBhNEapAYdviC0pyVoYpOBd1ykUhY5o0bIwnYD1FIZnhjBeKFzaXom75U0UTmnXQPhNoPPIn2BNirYfQfhJDclzbRMqQvOk1xpWaikEGWpuJT6JdqL_8c0YHM-TSGSBc-IpdmrP3-9ix61qNtDG4vrG_0abarlYja_3ndi-gXQ1WXM
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+%CE%B5-phase-isometries+between+the+positive+cones+of+continuous+function+spaces&rft.jtitle=Indian+journal+of+pure+and+applied+mathematics&rft.au=Wang%2C+Wenting&rft.au=An%2C+Aimin&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0019-5588&rft.eissn=0975-7465&rft.volume=56&rft.issue=2&rft.spage=728&rft.epage=736&rft_id=info:doi/10.1007%2Fs13226-023-00514-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-5588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-5588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-5588&client=summon