On ε-phase-isometries between the positive cones of continuous function spaces
Let K and T be compact Hausdorff spaces, C+(K)={f∈C(K):f(k)≥0forallk∈K} be the positive cone of C(K). In this paper, we prove that if K is a compact Hausdorff perfectly normal space, then for every ε-phase-isometry F:C+(K)→C+(T), there are nonempty closed subset S⊂T and an additive isometry V:C+(K)→...
Uloženo v:
| Vydáno v: | Indian journal of pure and applied mathematics Ročník 56; číslo 2; s. 728 - 736 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Springer Nature B.V
01.06.2025
|
| Témata: | |
| ISSN: | 0019-5588, 0975-7465 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let K and T be compact Hausdorff spaces, C+(K)={f∈C(K):f(k)≥0forallk∈K} be the positive cone of C(K). In this paper, we prove that if K is a compact Hausdorff perfectly normal space, then for every ε-phase-isometry F:C+(K)→C+(T), there are nonempty closed subset S⊂T and an additive isometry V:C+(K)→C+(S) defined as V(f)=limn→∞F(2nf)|S2n for each f∈C+(K) satisfying that ‖F(f)|S-V(f)‖≤32ε,forallf∈C+(K).Moreover, if F is almost surjective, then there exists a unique homeomorphism γ:T→K such that |F(f)(t)-f(γ(t))|≤32ε,t∈T,f∈C+(K). |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0019-5588 0975-7465 |
| DOI: | 10.1007/s13226-023-00514-y |