Support Vector Machine Optimized by Henry Gas Solubility Optimization Algorithm and Archimedes Optimization Algorithm to Solve Data Classification Problems

Support vector machine (SVM) is the minimization of structural risk to construct a better hyperplane to maximize the distance between the hyperplane and the sample points on both sides of hyperplane. Two improved physics-wise swarm intelligence optimization algorithms (Henry gas solubility optimizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering letters Jg. 31; H. 2; S. 531
Hauptverfasser: Yu, Ji-Sheng, Zhang, Sheng-Kai, Wang, Jie-Sheng, Li, Song, Sun, Ji, Wang, Rui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hong Kong International Association of Engineers 23.05.2023
Schlagworte:
ISSN:1816-093X, 1816-0948
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Support vector machine (SVM) is the minimization of structural risk to construct a better hyperplane to maximize the distance between the hyperplane and the sample points on both sides of hyperplane. Two improved physics-wise swarm intelligence optimization algorithms (Henry gas solubility optimization algorithm and Archimedes optimization algorithm) were proposed based on Lévy flight operator, Brownian motion operator and Tangent flight motion operator to optimize the penalty factor and kernel function parameters of SVM so as to enhance its global and local search ability. Finally, the Iris datasets, Strip surface defect datasets, Wine datasets and Wisconsin datasets of breast cancer in UCI datasets were selected to carry out the simulation experiment. Simulation results show that optimizing SVM based on improved physical-wise swarm intelligence algorithms can effectively improve the classification accuracy.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1816-093X
1816-0948