NAT10 and N4-acetylcytidine restrain R-loop levels and related inflammatory responses

N4-acetylcytidine (ac4C) is deposited on diverse RNAs by N-acetyltransferase 10 (NAT10), a protein with high biological relevance for aging and cancer. We performed a comprehensive survey of ac4C using metabolic labeling, sodium cyanoborohydride chemical treatment coupled to next-generation sequenci...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science advances Ročník 11; číslo 13; s. eads6144
Hlavní autoři: Debnath, Turja K, Abell, Nathan S, Li, Yi-Ru, Devanathan, Sravan K, Navedo, Enrique, Xhemalçe, Blerta
Médium: Journal Article
Jazyk:angličtina
Vydáno: American Association for the Advancement of Science 26.03.2025
Témata:
ISSN:2375-2548, 2375-2548
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:N4-acetylcytidine (ac4C) is deposited on diverse RNAs by N-acetyltransferase 10 (NAT10), a protein with high biological relevance for aging and cancer. We performed a comprehensive survey of ac4C using metabolic labeling, sodium cyanoborohydride chemical treatment coupled to next-generation sequencing (NGS), and ac4C antibody-based cell and molecular biology techniques. Our analysis shows that NAT10-dependent ac4C-acetylation is robust in rRNA and specific tRNAs but low/spurious in mRNA. It also revealed an inflammatory signature and mutagenesis at transcriptionally active sites in NAT10-KO cells. This finding led us to explore the role of NAT10 in R-loops, which were recently linked to APOBEC3B-mediated mutagenesis. Our analysis showed that R-loops are ac4C-acetylated in a NAT10-dependent manner. Furthermore, NAT10 restrains the levels of R-loops at a subset of differentially expressed genes in a catalytic activity-dependent manner. Together with cellular biology data showing ac4C-modified RNA in endosomal structures, we propose that increased levels of ac4C-unmodified RNAs, likely derived from R-loops, in endosomal structures induce inflammatory responses.N4-acetylcytidine (ac4C) is deposited on diverse RNAs by N-acetyltransferase 10 (NAT10), a protein with high biological relevance for aging and cancer. We performed a comprehensive survey of ac4C using metabolic labeling, sodium cyanoborohydride chemical treatment coupled to next-generation sequencing (NGS), and ac4C antibody-based cell and molecular biology techniques. Our analysis shows that NAT10-dependent ac4C-acetylation is robust in rRNA and specific tRNAs but low/spurious in mRNA. It also revealed an inflammatory signature and mutagenesis at transcriptionally active sites in NAT10-KO cells. This finding led us to explore the role of NAT10 in R-loops, which were recently linked to APOBEC3B-mediated mutagenesis. Our analysis showed that R-loops are ac4C-acetylated in a NAT10-dependent manner. Furthermore, NAT10 restrains the levels of R-loops at a subset of differentially expressed genes in a catalytic activity-dependent manner. Together with cellular biology data showing ac4C-modified RNA in endosomal structures, we propose that increased levels of ac4C-unmodified RNAs, likely derived from R-loops, in endosomal structures induce inflammatory responses.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.ads6144