Linking Expression of Cell-Surface Receptors with Transcription Factors by Computational Analysis of Paired Single-Cell Proteomes and Transcriptomes

Complex signaling and transcriptional programs control the development and physiology of specialized cell types. Genetic perturbations in these programs cause human cancers to arise from a diverse set of specialized cell types and developmental states. Understanding these complex systems and their p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in molecular biology (Clifton, N.J.) Jg. 2660; S. 149
Hauptverfasser: Sagan, April, Ma, Xiaojun, Ramjattun, Koushul, Osmanbeyoglu, Hatice Ulku
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 2023
Schlagworte:
ISSN:1940-6029, 1940-6029
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Complex signaling and transcriptional programs control the development and physiology of specialized cell types. Genetic perturbations in these programs cause human cancers to arise from a diverse set of specialized cell types and developmental states. Understanding these complex systems and their potential to drive cancer is critical for the development of immunotherapies and druggable targets. Pioneering single-cell multi-omics technologies that analyze transcriptional states have been coupled with the expression of cell-surface receptors. This chapter describes SPaRTAN (Single-cell Proteomic and RNA-based Transcription factor Activity Network), a computational framework, to link transcription factors with cell-surface protein expression. SPaRTAN uses CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) data and cis-regulatory sites to model the effect of interactions between transcription factors and cell-surface receptors on gene expression. We demonstrate the pipeline for SPaRTAN using CITE-seq data from peripheral blood mononuclear cells.
AbstractList Complex signaling and transcriptional programs control the development and physiology of specialized cell types. Genetic perturbations in these programs cause human cancers to arise from a diverse set of specialized cell types and developmental states. Understanding these complex systems and their potential to drive cancer is critical for the development of immunotherapies and druggable targets. Pioneering single-cell multi-omics technologies that analyze transcriptional states have been coupled with the expression of cell-surface receptors. This chapter describes SPaRTAN (Single-cell Proteomic and RNA-based Transcription factor Activity Network), a computational framework, to link transcription factors with cell-surface protein expression. SPaRTAN uses CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) data and cis-regulatory sites to model the effect of interactions between transcription factors and cell-surface receptors on gene expression. We demonstrate the pipeline for SPaRTAN using CITE-seq data from peripheral blood mononuclear cells.
Complex signaling and transcriptional programs control the development and physiology of specialized cell types. Genetic perturbations in these programs cause human cancers to arise from a diverse set of specialized cell types and developmental states. Understanding these complex systems and their potential to drive cancer is critical for the development of immunotherapies and druggable targets. Pioneering single-cell multi-omics technologies that analyze transcriptional states have been coupled with the expression of cell-surface receptors. This chapter describes SPaRTAN (Single-cell Proteomic and RNA-based Transcription factor Activity Network), a computational framework, to link transcription factors with cell-surface protein expression. SPaRTAN uses CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) data and cis-regulatory sites to model the effect of interactions between transcription factors and cell-surface receptors on gene expression. We demonstrate the pipeline for SPaRTAN using CITE-seq data from peripheral blood mononuclear cells.Complex signaling and transcriptional programs control the development and physiology of specialized cell types. Genetic perturbations in these programs cause human cancers to arise from a diverse set of specialized cell types and developmental states. Understanding these complex systems and their potential to drive cancer is critical for the development of immunotherapies and druggable targets. Pioneering single-cell multi-omics technologies that analyze transcriptional states have been coupled with the expression of cell-surface receptors. This chapter describes SPaRTAN (Single-cell Proteomic and RNA-based Transcription factor Activity Network), a computational framework, to link transcription factors with cell-surface protein expression. SPaRTAN uses CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) data and cis-regulatory sites to model the effect of interactions between transcription factors and cell-surface receptors on gene expression. We demonstrate the pipeline for SPaRTAN using CITE-seq data from peripheral blood mononuclear cells.
Author Osmanbeyoglu, Hatice Ulku
Sagan, April
Ma, Xiaojun
Ramjattun, Koushul
Author_xml – sequence: 1
  givenname: April
  surname: Sagan
  fullname: Sagan, April
  organization: UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 2
  givenname: Xiaojun
  surname: Ma
  fullname: Ma, Xiaojun
  organization: UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 3
  givenname: Koushul
  surname: Ramjattun
  fullname: Ramjattun, Koushul
  organization: UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 4
  givenname: Hatice Ulku
  surname: Osmanbeyoglu
  fullname: Osmanbeyoglu, Hatice Ulku
  email: osmanbeyogluhu@pitt.edu, osmanbeyogluhu@pitt.edu, osmanbeyogluhu@pitt.edu, osmanbeyogluhu@pitt.edu
  organization: Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA. osmanbeyogluhu@pitt.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37191796$$D View this record in MEDLINE/PubMed
BookMark eNpNkNtKxDAQhoMoHlbfQCSX3kRz6CbNpSyuCguKq9clTaYabZuatOi-hw9s6wG8mRn--flm-A_QdhtaQOiY0TNGqTrXKieMUMUkEUwKkheMbaF9pjNKJOV6-9-8hw5SeqE0U4Jnu2hPKKaZ0nIffa58--rbJ3z50UVIyYcWhwovoK7JeoiVsYDvwULXh5jwu--f8UM0bbLRd_1kXhr7vSo3eBGabujNJJsaX4xlk3yacHfGR3B4PR6qgUxwfBdDD6GBhE3r_jEn6RDtVKZOcPTbZ-hxefmwuCar26ubxcWKdExqRnLg1JiqlEJIqxUrHVTO0VJkVCnhbM5LMXeZLa3KOaPSjJFVbg7lnHPNteEzdPrD7WJ4GyD1ReOTHb8zLYQhFTxn2ZxrScVoPfm1DmUDruiib0zcFH9J8i9ox3tB
ContentType Journal Article
Copyright 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright_xml – notice: 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/978-1-0716-3163-8_11
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1940-6029
ExternalDocumentID 37191796
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: T15 LM007059
– fundername: NCI NIH HHS
  grantid: R00 CA207871
– fundername: NIGMS NIH HHS
  grantid: R35 GM146989
GroupedDBID ---
29M
53G
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CGR
CUY
CVF
ECM
EIF
F5P
NPM
P2P
RSU
SPO
UDS
WH7
ZGI
7X8
ID FETCH-LOGICAL-p1691-8e20aafb6336c971bdefdd0b340773dc82b35d4cbc782106a978fd5eb522929a2
IEDL.DBID 7X8
ISSN 1940-6029
IngestDate Fri Jul 11 16:06:36 EDT 2025
Wed Jul 23 01:46:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords Droplet-based scRNA-seq
scVerse and Scanpy ecosystems
Affinity regression (AR)
scADT-seq
Jupyter notebook
pySPaRTAN package
DoRothEA database
Single-cell Proteomic and RNA-based Transcription factor Activity Network (SPaRTAN)
Python package
Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq)
Antibody-derived tags (ADTs)
Language English
License 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1691-8e20aafb6336c971bdefdd0b340773dc82b35d4cbc782106a978fd5eb522929a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37191796
PQID 2814529603
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2814529603
pubmed_primary_37191796
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Methods in molecular biology (Clifton, N.J.)
PublicationTitleAlternate Methods Mol Biol
PublicationYear 2023
SSID ssj0047324
Score 2.0667567
Snippet Complex signaling and transcriptional programs control the development and physiology of specialized cell types. Genetic perturbations in these programs cause...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 149
SubjectTerms Humans
Leukocytes, Mononuclear
Proteome
Proteomics
Single-Cell Analysis
Transcription Factors - genetics
Transcriptome
Title Linking Expression of Cell-Surface Receptors with Transcription Factors by Computational Analysis of Paired Single-Cell Proteomes and Transcriptomes
URI https://www.ncbi.nlm.nih.gov/pubmed/37191796
https://www.proquest.com/docview/2814529603
Volume 2660
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-wYvvx_oigtdgm2za5CSyuHjQZUGFvZU8QVjbddcV_R_-YCdNV_ciCF56KHRaksnMN4_Oh9B5KozJGU9C9xQlbU4N0anISGaok4ynVrp6zuxt3uuJwUD2m4TbpGmrnNnE2lDbyoQc-QUVaV0jTNjl6IUE1qhQXW0oNBbRMgMoEw5mPviuIrRzFkltZWhxT6ic-3UuBk_gXzOwQhkjokjT30Fm7Wy6G__9zE203sBMfBX1YgstuHIbrUbiyY8d9HkbKRPw9XvTCFviyuOOGw7J_XTslXEYAKUbBS4eHHK1uHZqMxODu5GmB-sPHHkhmpwing05CeL6CuypxffwoqEjQTjuh7EQ1bObYFXaOZnh1i567F4_dG5Iw89ARmHEDhGOJkp5nTGWGZmn2jpvbaIZBIk5s0ZQzbhtG20AhkDoqWDRveVOA-YDVKboHloqq9IdIMyp8CDGK6c4BIxcUy4kTTMQKcGR-hY6my13AfofihqqdNV0UvwseAvtxz0rRnFQR8HyEI3K7PAPTx-htcAkH7Mrx2jZw-l3J2jFvL0-TcantWLBtde_-wJwZdjf
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+Expression+of+Cell-Surface+Receptors+with+Transcription+Factors+by+Computational+Analysis+of+Paired+Single-Cell+Proteomes+and+Transcriptomes&rft.jtitle=Methods+in+molecular+biology+%28Clifton%2C+N.J.%29&rft.au=Sagan%2C+April&rft.au=Ma%2C+Xiaojun&rft.au=Ramjattun%2C+Koushul&rft.au=Osmanbeyoglu%2C+Hatice+Ulku&rft.date=2023-01-01&rft.issn=1940-6029&rft.eissn=1940-6029&rft.volume=2660&rft.spage=149&rft_id=info:doi/10.1007%2F978-1-0716-3163-8_11&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-6029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-6029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-6029&client=summon