Sheet-like white matter fiber tracts: representation, clustering, and quantitative analysis

We introduce an automated and probabilistic method for subject-specific segmentation of sheet-like fiber tracts. In addition to clustering of trajectories into anatomically meaningful bundles, the method provides statistics of diffusion measures by establishing point correspondences on the estimated...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention Ročník 14; číslo Pt 2; s. 191
Hlavní autoři: Maddah, Mahnaz, Miller, James V, Sullivan, Edith V, Pfefferbaum, Adolf, Rohlfing, Torsten
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany 2011
Témata:
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce an automated and probabilistic method for subject-specific segmentation of sheet-like fiber tracts. In addition to clustering of trajectories into anatomically meaningful bundles, the method provides statistics of diffusion measures by establishing point correspondences on the estimated medial representation of each bundle. We also introduce a new approach for medial surface generation of sheet-like fiber bundles in order too initialize the proposed clustering algorithm. Applying the new method to a population study of brain aging on 24 subjects demonstrates the capabilities and strengths of the algorithm in identifying and visualizing spatial patterns of group differences.