Designing a Periodic Table for Alloy Design: Harnessing Machine Learning to Navigate a Multiscale Information Space

We provide an overview of how to apply statistical learning methods to directly track the role of alloying additions in the multiscale properties of alloys. This leads to a mapping process analogous to the Periodic Table where the resulting visualization scheme exhibits the grouping and proximity of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:JOM (1989) Ročník 72; číslo 12; s. 4370 - 4379
Hlavní autoři: Broderick, Scott R., Rajan, Krishna
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2020
Springer Nature B.V
Témata:
ISSN:1047-4838, 1543-1851
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We provide an overview of how to apply statistical learning methods to directly track the role of alloying additions in the multiscale properties of alloys. This leads to a mapping process analogous to the Periodic Table where the resulting visualization scheme exhibits the grouping and proximity of elements based on their impact on the properties of alloys. Unlike the conventional Periodic Table of elements, the distance between neighboring elements in our Alloy Periodic Table uncovers relationships in a complex high-dimensional information space that would not be easily seen otherwise. We embed this machine learning approach with an epistemic uncertainty assessment between data. We provide examples of how this data-driven exploratory platform appears to capture the alloy chemistry of known engineering alloys as well as to provide potential new directions for tuning chemistry for enhanced performance, consistent with accepted mechanistic paradigms governing alloy mechanical properties.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1047-4838
1543-1851
DOI:10.1007/s11837-020-04388-x