The WCGA in Lp(logL)α Spaces

We present some new results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces X . First, we generalize Temlyakov’s theorem (Temlyakov in Forum Math Sigma 2(12):26, 2014) to cover situations in which the modulus of smoothness and th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Constructive approximation Ročník 61; číslo 1; s. 115 - 147
Hlavný autor: Garrigós, Gustavo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2025
Springer Nature B.V
Predmet:
ISSN:0176-4276, 1432-0940
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present some new results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces X . First, we generalize Temlyakov’s theorem (Temlyakov in Forum Math Sigma 2(12):26, 2014) to cover situations in which the modulus of smoothness and the A 3 parameter are not necessarily power functions. Secondly, we apply this new theorem to the Zygmund spaces X = L p ( log L ) α , with 1 < p < ∞ and α ∈ R , and show that, when the Haar system is used, then exact recovery of N -sparse signals occurs when the number of iterations is ϕ ( N ) = O ( N max { 1 , 2 / p ′ } ( log N ) | α | p ′ ) . Moreover, this quantity is sharp when p ≤ 2 . Finally, an expression for ϕ ( N ) in the case of the trigonometric system is also given.
AbstractList We present some new results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces X . First, we generalize Temlyakov’s theorem (Temlyakov in Forum Math Sigma 2(12):26, 2014) to cover situations in which the modulus of smoothness and the A 3 parameter are not necessarily power functions. Secondly, we apply this new theorem to the Zygmund spaces X = L p ( log L ) α , with 1 < p < ∞ and α ∈ R , and show that, when the Haar system is used, then exact recovery of N -sparse signals occurs when the number of iterations is ϕ ( N ) = O ( N max { 1 , 2 / p ′ } ( log N ) | α | p ′ ) . Moreover, this quantity is sharp when p ≤ 2 . Finally, an expression for ϕ ( N ) in the case of the trigonometric system is also given.
We present some new results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces X. First, we generalize Temlyakov’s theorem (Temlyakov in Forum Math Sigma 2(12):26, 2014) to cover situations in which the modulus of smoothness and the A3 parameter are not necessarily power functions. Secondly, we apply this new theorem to the Zygmund spaces X=Lp(logL)α, with 1<p<∞ and α∈R, and show that, when the Haar system is used, then exact recovery of N-sparse signals occurs when the number of iterations is ϕ(N)=O(Nmax{1,2/p′}(logN)|α|p′). Moreover, this quantity is sharp when p≤2. Finally, an expression for ϕ(N) in the case of the trigonometric system is also given.
Author Garrigós, Gustavo
Author_xml – sequence: 1
  givenname: Gustavo
  surname: Garrigós
  fullname: Garrigós, Gustavo
  email: gustavo.garrigos@um.es
  organization: Departamento de Matemáticas, Universidad de Murcia
BookMark eNpFkNFKwzAUhoNMsJu-gCAUvNGL6DnJaZJejjKnUPDCiZchLcncGG1ttos9li_iM1mtIBz4OfDx__BN2aRpG8_YJcIdAuj7CCBVxkFIDrlSxI8nLEGSYngJJiwB1IqT0OqMTWPcAmBmpE7Y1erdp2_Fcp5umrTsbnbturz9-kxfOlf7eM5Og9tFf_GXM_b6sFgVj7x8Xj4V85J3mOk9d1INV4ng0aEPypAhjWRyXdfSVIJAVoow5E4EbTxkrsqNyb3JQuUk1XLGrsferm8_Dj7u7bY99M0waaXICDUJgQMlRyp2_aZZ-_6fQrA_HuzowQ4e7K8He5TfZSxPiw
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
DOI 10.1007/s00365-023-09664-y
DatabaseName Springer Nature OA Free Journals
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0940
EndPage 147
ExternalDocumentID 10_1007_s00365_023_09664_y
GrantInformation_xml – fundername: Universidad de Murcia
GroupedDBID -Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
ZY4
~8M
~EX
ID FETCH-LOGICAL-p157t-a36a36b2fe1a1ef68484714897cc38b2403b641f9a2f78e05ab9889e85fba34c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414341500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0176-4276
IngestDate Fri Sep 26 03:10:56 EDT 2025
Mon Jul 21 06:06:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 41A46
46B15
Trigonometric system
41A25
Non-linear approximation
46E30
Uniformly smooth Banach space
41A65
Greedy algorithm
46B20
Orlicz space
Haar system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p157t-a36a36b2fe1a1ef68484714897cc38b2403b641f9a2f78e05ab9889e85fba34c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00365-023-09664-y
PQID 3254174221
PQPubID 2043922
PageCount 33
ParticipantIDs proquest_journals_3254174221
springer_journals_10_1007_s00365_023_09664_y
PublicationCentury 2000
PublicationDate 20250200
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Constructive approximation
PublicationTitleAbbrev Constr Approx
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
SSID ssj0015837
Score 2.3625624
Snippet We present some new results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces X . First,...
We present some new results concerning Lebesgue-type inequalities for the Weak Chebyshev Greedy Algorithm (WCGA) in uniformly smooth Banach spaces X. First, we...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 115
SubjectTerms Algorithms
Analysis
Approximation
Banach spaces
Chebyshev approximation
Dictionaries
Greedy algorithms
Mathematics
Mathematics and Statistics
Numerical Analysis
Smoothness
Theorems
Title The WCGA in Lp(logL)α Spaces
URI https://link.springer.com/article/10.1007/s00365-023-09664-y
https://www.proquest.com/docview/3254174221
Volume 61
WOSCitedRecordID wos001414341500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1432-0940
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015837
  issn: 0176-4276
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCDb7Hayh48KBhoHptkj6VYPdQi1kdvSzZNoJd16VahP8s_4m8y2e6uKF4UcktYli-TzIT55huAM2ttyI1wJ00xjViE3ZEiHYsSPYkSRbVVybLZhBgO5Xgc3ZVFYXnFdq9SksVNXRe7eekUX01MkQu7OUOLVVhz7k54It_96KnOHYRyqZSJBUeMCF6Wyvz-jW-B5Y9caOFi-tv_-7kd2CpDyqC7tIFdWDHpHmze1nqs-T60nTUEz73rbjBNg0F27i68wcXHezDKPCPrAB77Vw-9G1Q2RkAZDsUcKcrdSIg1WGFjuWTexzAZCa2pTLzEXsIZtpEiVkjTCVUSSRkZGVqHP9P0EBrpS2qOIMDcTJRP3VGjmZc7M8Jz-7lmllAXDDWhVeETl9adx9S9Kt1LhhDchMsKj6_pWgm5ACV2oMQFKPHi-G_LT2CD-Ha7BUm6BY357NW0YV2_zaf57LTY9U_AwKYg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20CurBb7Ha6h48KBhoPjbJHkuxVtwWoVV7W3bTBHpZS7cK_Vn-EX-TyXa3onhRyC0hhMckecPMvAG4MMb4XAt702KmEAuwvVKkYVCiRkESU2XiZNFsQvR6cjgMHoqisKzMdi9DkvlLvSx2c9IprpqYIku7OUPzVVhjxDJ856P3n5axA18ulDKx4IgRwYtSmd_3-EYsf8RC8y-mvfO_w-3CdkEpvebCBvZgRaf7sNVd6rFmB1C31uA9t26b3jj1wsmlffDCq493rz9xGVmH8Ni-GbQ6qGiMgCbYFzMUU25HQozGMdaGS-b-GCYDoRSViZPYSzjDJoiJEVI3_DgJpAy09I3Fnyl6BJX0JdXH4GGuR7EL3VGtmJM708Ll9nPFDKGWDFWhVuITFdadRdR6ldaTIQRX4brE42t6qYScgxJZUKIclGh-8rfl57DRGXTDKLzr3Z_CJnGtd_OE6RpUZtNXXYd19TYbZ9Oz3AI-AZbZqQQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20iujCt1htNQsXCg7tPDIzWZZqVaylUB_dhcl0BrqJoY1CP8sf8ZucSdL4wI0I2SUM4eRO5l7uOecCcGKM8ZnmdqdJqiANkN1SuGlgpEZBJIkyMsqHTfBeTwyHQf-Lij9ju89bkrmmwbk0xWkjGZlGKXxzNipOWUygTcEZhbNFsEQdXc7V64PHso_gi9w1E3EGKeaskM38vsa3JPNHXzQ7bjob_3_RTbBepJpeK4-NLbCg422wdlf6tE53QN1GiffUvmp549jrJqf2R9g9e3_zBoljau2Ch87lffsaFgMTYIJ8nkJJmL0ibDSSSBsmqDt7qAi4UkREznovYhSZQGLDhW76MgqECLTwjf0uVJE9UImfY70PPMT0SLqWHtGKOhs0zR3nnylqMLFJUhXU5liFRdRPQ2KrTVvhYIyq4HyOzeft0iE5AyW0oIQZKOHs4G-PH4OV_kUn7N70bg_BKnYTeTMedQ1U0smLroNl9ZqOp5OjLBg-AFG_sd8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+WCGA+in+Lp%28logL%29%CE%B1+Spaces&rft.jtitle=Constructive+approximation&rft.au=Garrig%C3%B3s%2C+Gustavo&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0176-4276&rft.eissn=1432-0940&rft.volume=61&rft.issue=1&rft.spage=115&rft.epage=147&rft_id=info:doi/10.1007%2Fs00365-023-09664-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4276&client=summon