A convergent evolving finite element algorithm for Willmore flow of closed surfaces

A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik Jg. 149; H. 3; S. 595 - 643
Hauptverfasser: Kovács, Balázs, Li, Buyang, Lubich, Christian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Schlagworte:
ISSN:0029-599X, 0945-3245
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector and mean curvature, reformulated as a system of second-order equations, and uses these evolving geometric quantities in the velocity law interpolated to the finite element space. This numerical method admits a convergence analysis in the case of continuous finite elements of polynomial degree at least two. The error analysis combines stability estimates and consistency estimates to yield optimal-order H 1 -norm error bounds for the computed surface position, velocity, normal vector and mean curvature. The stability analysis is based on the matrix–vector formulation of the finite element method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments illustrate and complement the theoretical results.
AbstractList A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector and mean curvature, reformulated as a system of second-order equations, and uses these evolving geometric quantities in the velocity law interpolated to the finite element space. This numerical method admits a convergence analysis in the case of continuous finite elements of polynomial degree at least two. The error analysis combines stability estimates and consistency estimates to yield optimal-order H 1 -norm error bounds for the computed surface position, velocity, normal vector and mean curvature. The stability analysis is based on the matrix–vector formulation of the finite element method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments illustrate and complement the theoretical results.
A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector and mean curvature, reformulated as a system of second-order equations, and uses these evolving geometric quantities in the velocity law interpolated to the finite element space. This numerical method admits a convergence analysis in the case of continuous finite elements of polynomial degree at least two. The error analysis combines stability estimates and consistency estimates to yield optimal-order H1-norm error bounds for the computed surface position, velocity, normal vector and mean curvature. The stability analysis is based on the matrix–vector formulation of the finite element method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments illustrate and complement the theoretical results.
Author Kovács, Balázs
Li, Buyang
Lubich, Christian
Author_xml – sequence: 1
  givenname: Balázs
  surname: Kovács
  fullname: Kovács, Balázs
  email: balazs.kovacs@mathematik.uni-regensburg.de
  organization: Mathematisches Institut, Universität Tübingen, Fakultät für Mathematik, Universität Regensburg
– sequence: 2
  givenname: Buyang
  surname: Li
  fullname: Li, Buyang
  organization: Department of Applied Mathematics, Hong Kong Polytechnic University
– sequence: 3
  givenname: Christian
  surname: Lubich
  fullname: Lubich, Christian
  organization: Mathematisches Institut, Universität Tübingen
BookMark eNpFkE1LAzEQhoMoWKt_wFPAc3Qm2XSbYyl-QcGDBb0t2eykbkk3NdlW8Ne7tYKXd4bhYYZ5LthpFzti7BrhFgHKuwwgEcUQAlCqqfg-YSMwhRZKFvp06EEaoY15P2cXOa8BsJwUOGKvM-5it6e0oq7ntI9h33Yr7tuu7YlToM1hbsMqprb_2HAfE39rQ9jERNyH-MWj5y7ETA3Pu-Sto3zJzrwNma7-6pgtH-6X8yexeHl8ns8WYou67IVFsEYCgSbVKHRY1rbRXvm6mRY1GEdKNm4KutFKls4oLFyNztYlOLBWjdnNce02xc8d5b5ax13qhouVnIBCUyplBkodqbxNw2eU_imE6iCvOsqrhqh-5VXf6geZcWWb
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DOI 10.1007/s00211-021-01238-z
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 643
ExternalDocumentID 10_1007_s00211_021_01238_z
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
ID FETCH-LOGICAL-p157t-a10a920e05e3d31c17bad5f3fbd84b09ce32dc805d5327c9314cb1cab70c0aa3
IEDL.DBID RSV
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714852100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-599X
IngestDate Mon Oct 06 16:23:35 EDT 2025
Fri Feb 21 02:47:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 65M15
35R01
65M60
65M12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p157t-a10a920e05e3d31c17bad5f3fbd84b09ce32dc805d5327c9314cb1cab70c0aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2603197339
PQPubID 2043616
PageCount 49
ParticipantIDs proquest_journals_2603197339
springer_journals_10_1007_s00211_021_01238_z
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lubich, Mansour (CR39) 2015; 84
Mullins (CR42) 1957; 28
Bonito, Nochetto, Pauletti (CR12) 2010; 229
Dziuk, Elliott (CR23) 2013; 82
Willmore (CR50) 1993
Bao, Jiang, Srolovitz, Wang (CR7) 2017; 77
Helfrich (CR31) 1973; 28
CR33
Rusu (CR46) 2005; 7
Barrett, Garcke, Nürnberg (CR2) 2007; 222
Bartels (CR1) 2013; 33
Dziuk, Elliott (CR22) 2013; 22
Kuwert, Schätzle (CR38) 2002; 10
Deckelnick, Dziuk (CR17) 2009; 78
Dziuk, Elliott (CR21) 2007; 27
Pozzi (CR43) 2015; 17
Pozzi, Stinner (CR45) 2018; 39
Deckelnick, Dziuk, Elliott (CR18) 2003; 41
CR6
Dziuk, Lubich, Mansour (CR26) 2012; 32
Zhao, Jiang, Bao (CR51) 2020; 42
Dziuk (CR28) 2008; 111
Ecker (CR29) 2012
Demlow (CR24) 2009; 47
CR49
CR40
Bao, Jiang, Wang, Zhao (CR8) 2017; 330
Marques, Neves (CR41) 2014; 179
Deckelnick, Dziuk, Elliott (CR20) 2005; 43
Persson, Strang (CR44) 2004; 46
Walker (CR48) 2015
Kuwert, Schätzle (CR37) 2001; 57
Elliott, Stinner (CR30) 2010; 229
Barrett, Garcke, Nürnberg (CR3) 2007; 29
Thomsen (CR47) 1924; 3
CR13
Cahn, Elliott, Novick-Cohen (CR14) 1996; 7
Kovács, Li, Lubich, Power Guerra (CR35) 2017; 137
Barrett, Garcke, Nürnberg (CR4) 2008; 31
Bänsch, Morin, Nochetto (CR10) 2004; 42
Deckelnick, Katz, Schieweck (CR25) 2015; 84
Kovács, Li, Lubich (CR34) 2019; 143
Deckelnick, Dziuk (CR16) 2006; 8
Deckelnick, Dziuk, Elliott (CR19) 2005; 14
Kovács (CR36) 2018; 38
Huisken (CR32) 1984; 20
Barrett, Garcke, Nürnberg (CR5) 2015; 92
CR27
Chen, Lowengrub, Shen, Wang, Wise (CR15) 2018; 365
Bänsch, Morin, Nochetto (CR11) 2005; 203
Blaschke (CR9) 1929
References_xml – volume: 8
  start-page: 21
  issue: 1
  year: 2006
  end-page: 46
  ident: CR16
  article-title: Error analysis of a finite element method for the Willmore flow of graphs
  publication-title: Interfaces Free Bound.
– volume: 78
  start-page: 645
  issue: 266
  year: 2009
  end-page: 671
  ident: CR17
  article-title: Error analysis for the elastic flow of parametrized curves
  publication-title: Math. Comput.
– volume: 28
  start-page: 333
  year: 1957
  end-page: 339
  ident: CR42
  article-title: Theory of thermal grooving
  publication-title: J. Appl. Phys.
– volume: 43
  start-page: 1112
  issue: 3
  year: 2005
  end-page: 1138
  ident: CR20
  article-title: Fully discrete finite element approximation for anisotropic surface diffusion of graphs
  publication-title: SIAM J. Numer. Anal.
– ident: CR49
– volume: 29
  start-page: 1006
  issue: 3
  year: 2007
  end-page: 1041
  ident: CR3
  article-title: On the variational approximation of combined second and fourth order geometric evolution equations
  publication-title: SIAM J. Sci. Comput.
– volume: 3
  start-page: 31
  issue: 1
  year: 1924
  end-page: 56
  ident: CR47
  article-title: Grundlagen der konformen Flächentheorie
  publication-title: Abh. Math. Seminar Univ. Hamburg
– volume: 32
  start-page: 394
  issue: 2
  year: 2012
  end-page: 416
  ident: CR26
  article-title: Runge–Kutta time discretization of parabolic differential equations on evolving surfaces
  publication-title: IMA J. Numer. Anal.
– volume: 46
  start-page: 329
  issue: 2
  year: 2004
  end-page: 345
  ident: CR44
  article-title: A simple mesh generator in MATLAB
  publication-title: SIAM Rev.
– volume: 22
  start-page: 289
  year: 2013
  end-page: 396
  ident: CR22
  article-title: Finite element methods for surface PDEs
  publication-title: Acta Numer.
– volume: 84
  start-page: 513
  issue: 292
  year: 2015
  end-page: 542
  ident: CR39
  article-title: Variational discretization of wave equations on evolving surfaces
  publication-title: Math. Comput.
– volume: 92
  start-page: 052704
  issue: 5
  year: 2015
  ident: CR5
  article-title: Numerical computations of the dynamics of fluidic membranes and vesicles
  publication-title: Phys. Rev. E
– volume: 7
  start-page: 287
  issue: 3
  year: 1996
  end-page: 301
  ident: CR14
  article-title: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature
  publication-title: Eur. J. Appl. Math.
– volume: 27
  start-page: 262
  issue: 2
  year: 2007
  end-page: 292
  ident: CR21
  article-title: Finite elements on evolving surfaces
  publication-title: IMA J. Numer. Anal.
– volume: 330
  start-page: 380
  year: 2017
  end-page: 400
  ident: CR8
  article-title: A parametric finite element method for solid-state dewetting problems with anisotropic surface energies
  publication-title: J. Comput. Phys.
– volume: 42
  start-page: B327
  issue: 1
  year: 2020
  end-page: B352
  ident: CR51
  article-title: A parametric finite element method for solid-state dewetting problems in three dimensions
  publication-title: SIAM J. Sci. Comput.
– volume: 39
  start-page: 201
  issue: 1
  year: 2018
  end-page: 234, 03
  ident: CR45
  article-title: Elastic flow interacting with a lateral diffusion process: the one-dimensional graph case
  publication-title: IMA J. Numer. Anal.
– volume: 203
  start-page: 321
  issue: 1
  year: 2005
  end-page: 343
  ident: CR11
  article-title: A finite element method for surface diffusion: the parametric case
  publication-title: J. Comput. Phys.
– year: 1929
  ident: CR9
  publication-title: Vorlesungen über Differentialgeometrie III. Grundlehren der mathematischen Wissenschaften
– volume: 77
  start-page: 2093
  issue: 6
  year: 2017
  end-page: 2118
  ident: CR7
  article-title: Stable equilibria of anisotropic particles on substrates: a generalized Winterbottom construction
  publication-title: SIAM J. Appl. Math.
– volume: 20
  start-page: 237
  issue: 1
  year: 1984
  end-page: 266
  ident: CR32
  article-title: Flow by mean curvature of convex surfaces into spheres
  publication-title: J. Differ. Geom.
– volume: 14
  start-page: 139
  year: 2005
  end-page: 232
  ident: CR19
  article-title: Computation of geometric partial differential equations and mean curvature flow
  publication-title: Acta Numer.
– year: 2012
  ident: CR29
  publication-title: Regularity Theory for Mean Curvature Flow
– volume: 10
  start-page: 307
  issue: 2
  year: 2002
  end-page: 339
  ident: CR38
  article-title: Gradient flow for the Willmore functional
  publication-title: Commun. Anal. Geom.
– volume: 33
  start-page: 1115
  issue: 4
  year: 2013
  end-page: 1125
  ident: CR1
  article-title: A simple scheme for the approximation of the elastic flow of inextensible curves
  publication-title: IMA J. Numer. Anal.
– volume: 137
  start-page: 643
  issue: 3
  year: 2017
  end-page: 689
  ident: CR35
  article-title: Convergence of finite elements on an evolving surface driven by diffusion on the surface
  publication-title: Numer. Math.
– volume: 229
  start-page: 6585
  issue: 18
  year: 2010
  end-page: 6612
  ident: CR30
  article-title: Modeling and computation of two phase geometric biomembranes using surface finite elements
  publication-title: J. Comput. Phys.
– volume: 42
  start-page: 773
  issue: 2
  year: 2004
  end-page: 799
  ident: CR10
  article-title: Surface diffusion of graphs: variational formulation, error analysis, and simulation
  publication-title: SIAM J. Numer. Anal.
– volume: 143
  start-page: 797
  issue: 4
  year: 2019
  end-page: 853
  ident: CR34
  article-title: A convergent evolving finite element algorithm for mean curvature flow of closed surfaces
  publication-title: Numer. Math.
– volume: 84
  start-page: 2617
  issue: 296
  year: 2015
  end-page: 2643
  ident: CR25
  article-title: A -finite element method for the Willmore flow of two-dimensional graphs
  publication-title: Math. Comput.
– volume: 57
  start-page: 409
  issue: 3
  year: 2001
  end-page: 441
  ident: CR37
  article-title: The Willmore flow with small initial energy
  publication-title: J. Differ. Geom.
– volume: 38
  start-page: 430
  issue: 1
  year: 2018
  end-page: 459
  ident: CR36
  article-title: High-order evolving surface finite element method for parabolic problems on evolving surfaces
  publication-title: IMA J. Numer. Anal.
– volume: 229
  start-page: 3171
  issue: 9
  year: 2010
  end-page: 3188
  ident: CR12
  article-title: Parametric FEM for geometric biomembranes
  publication-title: J. Comput. Phys.
– ident: CR33
– volume: 7
  start-page: 229
  issue: 3
  year: 2005
  end-page: 239
  ident: CR46
  article-title: An algorithm for the elastic flow of surfaces
  publication-title: Interfaces Free Bound.
– ident: CR6
– ident: CR40
– volume: 365
  start-page: 56
  year: 2018
  end-page: 73
  ident: CR15
  article-title: Efficient energy stable schemes for isotropic and strongly anisotropic Cahn–Hilliard systems with the Willmore regularization
  publication-title: J. Comput. Phys.
– volume: 41
  start-page: 2161
  issue: 6
  year: 2003
  end-page: 2179
  ident: CR18
  article-title: Error analysis of a semidiscrete numerical scheme for diffusion in axially symmetric surfaces
  publication-title: SIAM J. Numer. Anal.
– ident: CR27
– volume: 82
  start-page: 1
  issue: 281
  year: 2013
  end-page: 24
  ident: CR23
  article-title: -Estimates for the evolving surface finite element method
  publication-title: Math. Comput.
– volume: 47
  start-page: 805
  issue: 2
  year: 2009
  end-page: 807
  ident: CR24
  article-title: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces
  publication-title: SIAM J. Numer. Anal.
– volume: 179
  start-page: 683
  issue: 2
  year: 2014
  end-page: 782
  ident: CR41
  article-title: Min-Max theory and the Willmore conjecture
  publication-title: Ann. Math.
– volume: 28
  start-page: 693
  issue: 11–12
  year: 1973
  end-page: 703
  ident: CR31
  article-title: Elastic properties of lipid bilayers: theory and possible experiments
  publication-title: Zeitschrift für Naturforschung C
– volume: 31
  start-page: 225
  issue: 1
  year: 2008
  end-page: 253
  ident: CR4
  article-title: Parametric approximation of Willmore flow and related geometric evolution equations
  publication-title: SIAM J. on Sci. Comput.
– volume: 111
  start-page: 55
  issue: 1
  year: 2008
  end-page: 80
  ident: CR28
  article-title: Computational parametric Willmore flow
  publication-title: Numer. Math.
– ident: CR13
– year: 1993
  ident: CR50
  publication-title: Riemannian Geometry
– volume: 17
  start-page: 189
  issue: 2
  year: 2015
  end-page: 232
  ident: CR43
  article-title: Computational anisotropic Willmore flow
  publication-title: Interfaces Free Bound.
– volume: 222
  start-page: 441
  issue: 1
  year: 2007
  end-page: 467
  ident: CR2
  article-title: A parametric finite element method for fourth order geometric evolution equations
  publication-title: J. Comput. Phys.
– year: 2015
  ident: CR48
  publication-title: The Shape of Things: A Practical Guide to Differential Geometry and the Shape Derivative
SSID ssj0017641
Score 2.4805822
Snippet A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 595
SubjectTerms Algorithms
Consistency
Convergence
Curvature
Error analysis
Estimates
Evolution
Finite element method
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Numerical methods
Polynomials
Simulation
Stability analysis
Surface diffusion
Theoretical
Two dimensional flow
Title A convergent evolving finite element algorithm for Willmore flow of closed surfaces
URI https://link.springer.com/article/10.1007/s00211-021-01238-z
https://www.proquest.com/docview/2603197339
Volume 149
WOSCitedRecordID wos000714852100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PejB6VScTsnBo4UmaZrmOMThxSFsyG4lSRMdzFXaTmF_vUnWVhQveumlJZSXH-97ed_3HgDXXJE4kyYOrC-3AQpSNBDcmMBgI7Sx-Jwy6ZtNsPE4mc34Yy0KKxu2e5OS9Cd1K3Zz7siGvtiFv9bRBOttsENdtRkXo0-e2twBiyPUEDso57NaKvP7GN-A5Y9cqHcxo-7_fu4QHNSQEg43a-AIbOllD3Sbdg2w3r09sP_Qlmgtj8FkCD3j3IkvK6jtKeWuFqCZOxAK9YZVDsXiOS_m1csrtOAWussZR8yFZpF_wNxAtchLncFyVRhH7ToB09Hd9PY-qDssBG-IsioQKBQchzqkmmQEKcSkyKghRmZJJEOuNMGZSkKaUYKZ4gRFSiIlJAtVKAQ5BZ1lvtRnAEZEmgzLJFaJieLE1fwWGEmmhQ2JLKzog0Fj57TeJWWKXYtrO4GE98FNY9ev121FZW_c1D5Sb9x0ff63zy_AHnZT4yWEA9CpipW-BLvqvZqXxZVfPZ9OwMLA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwsSq-zcGjhSZpm-a4iIuiLoKL7K0kaaIL61barsL-epNuW1G86KWXlFImj_m-zDczAOdc0SiVJvKsL7cEBavQE9wYzxAjtLH4PGSyajbB-v14OOQPdVJY0ajdm5BkdVK3yW7OHVnqSxz9tY7Gmy3CcuDa7DiO_vjUxg5YFOBG2BFyPqxTZX7_xjdg-SMWWrmY3ub_fm4LNmpIibrzNbANC3rSgc2mXQOqd28H1u_bEq3FDjx2UaU4d8mXJdL2lHJXC8iMHAhFeq4qR2L8nOWj8uUVWXCL3OWME-YiM84-UGaQGmeFTlExzY2Tdu3CoHc1uLz26g4L3hsOWekJ7AtOfO2HmqYUK8ykSENDjUzjQPpcaUpSFfthGlLCFKc4UBIrIZmvfCHoHixNsoneBxRQaVIi40jFJohiV_NbECyZFpYSWVhxAMeNnZN6lxQJcS2uOaOUH8BFY9ev4baicmXcxD6SyrjJ7PBvr5_B6vXg_i65u-nfHsEacdNUpRMew1KZT_UJrKj3clTkp9VK-gR66MWk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLb7NwaPFJmmb5ijqoqiLqMjeSp66sG6XbVXw15t02_WBF_HSS0sI0yTzTeb7ZgAOuKKJljYJnC93AQpWcSC4tYElVhjr8HnMZNVsgrXbaafDb76o-Cu2e5OSHGkafJWmfnk00PZoLHzzrsmFwcSHws7pBO-TMB25SMaTum7vHsZ5BJZEuCF5xJx3atnM72N8A5k_8qKVu2kt_n-iS7BQQ010PFobyzBh-iuw2LRxQPWuXoH563Hp1mIV7o5RxUT3oswSGXd6-SsHZLsenCIzYpsj0XvMh93y6Rk50Iv8pY0n7CLby99QbpHq5YXRqHgZWk_5WoP71tn9yXlQd14IBjhmZSBwKDgJTRgbqilWmEmhY0ut1GkkQ64MJVqlYaxjSpjiFEdKYiUkC1UoBF2HqX7eNxuAIiqtJjJNVGqjJPW1wAXBkhnhQiUHNzZhp7F5Vu-eIiO-9TVnlPJNOGxs_Pl6XGm5Mm7mHlll3Ox962-f78PszWkru7poX27DHPF_qVIZ7sBUOXwxuzCjXstuMdyrFtUHvAvOiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convergent+evolving+finite+element+algorithm+for+Willmore+flow+of+closed+surfaces&rft.jtitle=Numerische+Mathematik&rft.au=Kov%C3%A1cs%2C+Bal%C3%A1zs&rft.au=Li%2C+Buyang&rft.au=Lubich%2C+Christian&rft.date=2021-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=149&rft.issue=3&rft.spage=595&rft.epage=643&rft_id=info:doi/10.1007%2Fs00211-021-01238-z&rft.externalDocID=10_1007_s00211_021_01238_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon