A convergent evolving finite element algorithm for Willmore flow of closed surfaces
A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector a...
Gespeichert in:
| Veröffentlicht in: | Numerische Mathematik Jg. 149; H. 3; S. 595 - 643 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0029-599X, 0945-3245 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector and mean curvature, reformulated as a system of second-order equations, and uses these evolving geometric quantities in the velocity law interpolated to the finite element space. This numerical method admits a convergence analysis in the case of continuous finite elements of polynomial degree at least two. The error analysis combines stability estimates and consistency estimates to yield optimal-order
H
1
-norm error bounds for the computed surface position, velocity, normal vector and mean curvature. The stability analysis is based on the matrix–vector formulation of the finite element method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments illustrate and complement the theoretical results. |
|---|---|
| AbstractList | A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector and mean curvature, reformulated as a system of second-order equations, and uses these evolving geometric quantities in the velocity law interpolated to the finite element space. This numerical method admits a convergence analysis in the case of continuous finite elements of polynomial degree at least two. The error analysis combines stability estimates and consistency estimates to yield optimal-order
H
1
-norm error bounds for the computed surface position, velocity, normal vector and mean curvature. The stability analysis is based on the matrix–vector formulation of the finite element method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments illustrate and complement the theoretical results. A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector and mean curvature, reformulated as a system of second-order equations, and uses these evolving geometric quantities in the velocity law interpolated to the finite element space. This numerical method admits a convergence analysis in the case of continuous finite elements of polynomial degree at least two. The error analysis combines stability estimates and consistency estimates to yield optimal-order H1-norm error bounds for the computed surface position, velocity, normal vector and mean curvature. The stability analysis is based on the matrix–vector formulation of the finite element method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments illustrate and complement the theoretical results. |
| Author | Kovács, Balázs Li, Buyang Lubich, Christian |
| Author_xml | – sequence: 1 givenname: Balázs surname: Kovács fullname: Kovács, Balázs email: balazs.kovacs@mathematik.uni-regensburg.de organization: Mathematisches Institut, Universität Tübingen, Fakultät für Mathematik, Universität Regensburg – sequence: 2 givenname: Buyang surname: Li fullname: Li, Buyang organization: Department of Applied Mathematics, Hong Kong Polytechnic University – sequence: 3 givenname: Christian surname: Lubich fullname: Lubich, Christian organization: Mathematisches Institut, Universität Tübingen |
| BookMark | eNpFkE1LAzEQhoMoWKt_wFPAc3Qm2XSbYyl-QcGDBb0t2eykbkk3NdlW8Ne7tYKXd4bhYYZ5LthpFzti7BrhFgHKuwwgEcUQAlCqqfg-YSMwhRZKFvp06EEaoY15P2cXOa8BsJwUOGKvM-5it6e0oq7ntI9h33Yr7tuu7YlToM1hbsMqprb_2HAfE39rQ9jERNyH-MWj5y7ETA3Pu-Sto3zJzrwNma7-6pgtH-6X8yexeHl8ns8WYou67IVFsEYCgSbVKHRY1rbRXvm6mRY1GEdKNm4KutFKls4oLFyNztYlOLBWjdnNce02xc8d5b5ax13qhouVnIBCUyplBkodqbxNw2eU_imE6iCvOsqrhqh-5VXf6geZcWWb |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DOI | 10.1007/s00211-021-01238-z |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 0945-3245 |
| EndPage | 643 |
| ExternalDocumentID | 10_1007_s00211_021_01238_z |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA |
| ID | FETCH-LOGICAL-p157t-a10a920e05e3d31c17bad5f3fbd84b09ce32dc805d5327c9314cb1cab70c0aa3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714852100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-599X |
| IngestDate | Mon Oct 06 16:23:35 EDT 2025 Fri Feb 21 02:47:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 65M15 35R01 65M60 65M12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p157t-a10a920e05e3d31c17bad5f3fbd84b09ce32dc805d5327c9314cb1cab70c0aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2603197339 |
| PQPubID | 2043616 |
| PageCount | 49 |
| ParticipantIDs | proquest_journals_2603197339 springer_journals_10_1007_s00211_021_01238_z |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Numerische Mathematik |
| PublicationTitleAbbrev | Numer. Math |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Lubich, Mansour (CR39) 2015; 84 Mullins (CR42) 1957; 28 Bonito, Nochetto, Pauletti (CR12) 2010; 229 Dziuk, Elliott (CR23) 2013; 82 Willmore (CR50) 1993 Bao, Jiang, Srolovitz, Wang (CR7) 2017; 77 Helfrich (CR31) 1973; 28 CR33 Rusu (CR46) 2005; 7 Barrett, Garcke, Nürnberg (CR2) 2007; 222 Bartels (CR1) 2013; 33 Dziuk, Elliott (CR22) 2013; 22 Kuwert, Schätzle (CR38) 2002; 10 Deckelnick, Dziuk (CR17) 2009; 78 Dziuk, Elliott (CR21) 2007; 27 Pozzi (CR43) 2015; 17 Pozzi, Stinner (CR45) 2018; 39 Deckelnick, Dziuk, Elliott (CR18) 2003; 41 CR6 Dziuk, Lubich, Mansour (CR26) 2012; 32 Zhao, Jiang, Bao (CR51) 2020; 42 Dziuk (CR28) 2008; 111 Ecker (CR29) 2012 Demlow (CR24) 2009; 47 CR49 CR40 Bao, Jiang, Wang, Zhao (CR8) 2017; 330 Marques, Neves (CR41) 2014; 179 Deckelnick, Dziuk, Elliott (CR20) 2005; 43 Persson, Strang (CR44) 2004; 46 Walker (CR48) 2015 Kuwert, Schätzle (CR37) 2001; 57 Elliott, Stinner (CR30) 2010; 229 Barrett, Garcke, Nürnberg (CR3) 2007; 29 Thomsen (CR47) 1924; 3 CR13 Cahn, Elliott, Novick-Cohen (CR14) 1996; 7 Kovács, Li, Lubich, Power Guerra (CR35) 2017; 137 Barrett, Garcke, Nürnberg (CR4) 2008; 31 Bänsch, Morin, Nochetto (CR10) 2004; 42 Deckelnick, Katz, Schieweck (CR25) 2015; 84 Kovács, Li, Lubich (CR34) 2019; 143 Deckelnick, Dziuk (CR16) 2006; 8 Deckelnick, Dziuk, Elliott (CR19) 2005; 14 Kovács (CR36) 2018; 38 Huisken (CR32) 1984; 20 Barrett, Garcke, Nürnberg (CR5) 2015; 92 CR27 Chen, Lowengrub, Shen, Wang, Wise (CR15) 2018; 365 Bänsch, Morin, Nochetto (CR11) 2005; 203 Blaschke (CR9) 1929 |
| References_xml | – volume: 8 start-page: 21 issue: 1 year: 2006 end-page: 46 ident: CR16 article-title: Error analysis of a finite element method for the Willmore flow of graphs publication-title: Interfaces Free Bound. – volume: 78 start-page: 645 issue: 266 year: 2009 end-page: 671 ident: CR17 article-title: Error analysis for the elastic flow of parametrized curves publication-title: Math. Comput. – volume: 28 start-page: 333 year: 1957 end-page: 339 ident: CR42 article-title: Theory of thermal grooving publication-title: J. Appl. Phys. – volume: 43 start-page: 1112 issue: 3 year: 2005 end-page: 1138 ident: CR20 article-title: Fully discrete finite element approximation for anisotropic surface diffusion of graphs publication-title: SIAM J. Numer. Anal. – ident: CR49 – volume: 29 start-page: 1006 issue: 3 year: 2007 end-page: 1041 ident: CR3 article-title: On the variational approximation of combined second and fourth order geometric evolution equations publication-title: SIAM J. Sci. Comput. – volume: 3 start-page: 31 issue: 1 year: 1924 end-page: 56 ident: CR47 article-title: Grundlagen der konformen Flächentheorie publication-title: Abh. Math. Seminar Univ. Hamburg – volume: 32 start-page: 394 issue: 2 year: 2012 end-page: 416 ident: CR26 article-title: Runge–Kutta time discretization of parabolic differential equations on evolving surfaces publication-title: IMA J. Numer. Anal. – volume: 46 start-page: 329 issue: 2 year: 2004 end-page: 345 ident: CR44 article-title: A simple mesh generator in MATLAB publication-title: SIAM Rev. – volume: 22 start-page: 289 year: 2013 end-page: 396 ident: CR22 article-title: Finite element methods for surface PDEs publication-title: Acta Numer. – volume: 84 start-page: 513 issue: 292 year: 2015 end-page: 542 ident: CR39 article-title: Variational discretization of wave equations on evolving surfaces publication-title: Math. Comput. – volume: 92 start-page: 052704 issue: 5 year: 2015 ident: CR5 article-title: Numerical computations of the dynamics of fluidic membranes and vesicles publication-title: Phys. Rev. E – volume: 7 start-page: 287 issue: 3 year: 1996 end-page: 301 ident: CR14 article-title: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature publication-title: Eur. J. Appl. Math. – volume: 27 start-page: 262 issue: 2 year: 2007 end-page: 292 ident: CR21 article-title: Finite elements on evolving surfaces publication-title: IMA J. Numer. Anal. – volume: 330 start-page: 380 year: 2017 end-page: 400 ident: CR8 article-title: A parametric finite element method for solid-state dewetting problems with anisotropic surface energies publication-title: J. Comput. Phys. – volume: 42 start-page: B327 issue: 1 year: 2020 end-page: B352 ident: CR51 article-title: A parametric finite element method for solid-state dewetting problems in three dimensions publication-title: SIAM J. Sci. Comput. – volume: 39 start-page: 201 issue: 1 year: 2018 end-page: 234, 03 ident: CR45 article-title: Elastic flow interacting with a lateral diffusion process: the one-dimensional graph case publication-title: IMA J. Numer. Anal. – volume: 203 start-page: 321 issue: 1 year: 2005 end-page: 343 ident: CR11 article-title: A finite element method for surface diffusion: the parametric case publication-title: J. Comput. Phys. – year: 1929 ident: CR9 publication-title: Vorlesungen über Differentialgeometrie III. Grundlehren der mathematischen Wissenschaften – volume: 77 start-page: 2093 issue: 6 year: 2017 end-page: 2118 ident: CR7 article-title: Stable equilibria of anisotropic particles on substrates: a generalized Winterbottom construction publication-title: SIAM J. Appl. Math. – volume: 20 start-page: 237 issue: 1 year: 1984 end-page: 266 ident: CR32 article-title: Flow by mean curvature of convex surfaces into spheres publication-title: J. Differ. Geom. – volume: 14 start-page: 139 year: 2005 end-page: 232 ident: CR19 article-title: Computation of geometric partial differential equations and mean curvature flow publication-title: Acta Numer. – year: 2012 ident: CR29 publication-title: Regularity Theory for Mean Curvature Flow – volume: 10 start-page: 307 issue: 2 year: 2002 end-page: 339 ident: CR38 article-title: Gradient flow for the Willmore functional publication-title: Commun. Anal. Geom. – volume: 33 start-page: 1115 issue: 4 year: 2013 end-page: 1125 ident: CR1 article-title: A simple scheme for the approximation of the elastic flow of inextensible curves publication-title: IMA J. Numer. Anal. – volume: 137 start-page: 643 issue: 3 year: 2017 end-page: 689 ident: CR35 article-title: Convergence of finite elements on an evolving surface driven by diffusion on the surface publication-title: Numer. Math. – volume: 229 start-page: 6585 issue: 18 year: 2010 end-page: 6612 ident: CR30 article-title: Modeling and computation of two phase geometric biomembranes using surface finite elements publication-title: J. Comput. Phys. – volume: 42 start-page: 773 issue: 2 year: 2004 end-page: 799 ident: CR10 article-title: Surface diffusion of graphs: variational formulation, error analysis, and simulation publication-title: SIAM J. Numer. Anal. – volume: 143 start-page: 797 issue: 4 year: 2019 end-page: 853 ident: CR34 article-title: A convergent evolving finite element algorithm for mean curvature flow of closed surfaces publication-title: Numer. Math. – volume: 84 start-page: 2617 issue: 296 year: 2015 end-page: 2643 ident: CR25 article-title: A -finite element method for the Willmore flow of two-dimensional graphs publication-title: Math. Comput. – volume: 57 start-page: 409 issue: 3 year: 2001 end-page: 441 ident: CR37 article-title: The Willmore flow with small initial energy publication-title: J. Differ. Geom. – volume: 38 start-page: 430 issue: 1 year: 2018 end-page: 459 ident: CR36 article-title: High-order evolving surface finite element method for parabolic problems on evolving surfaces publication-title: IMA J. Numer. Anal. – volume: 229 start-page: 3171 issue: 9 year: 2010 end-page: 3188 ident: CR12 article-title: Parametric FEM for geometric biomembranes publication-title: J. Comput. Phys. – ident: CR33 – volume: 7 start-page: 229 issue: 3 year: 2005 end-page: 239 ident: CR46 article-title: An algorithm for the elastic flow of surfaces publication-title: Interfaces Free Bound. – ident: CR6 – ident: CR40 – volume: 365 start-page: 56 year: 2018 end-page: 73 ident: CR15 article-title: Efficient energy stable schemes for isotropic and strongly anisotropic Cahn–Hilliard systems with the Willmore regularization publication-title: J. Comput. Phys. – volume: 41 start-page: 2161 issue: 6 year: 2003 end-page: 2179 ident: CR18 article-title: Error analysis of a semidiscrete numerical scheme for diffusion in axially symmetric surfaces publication-title: SIAM J. Numer. Anal. – ident: CR27 – volume: 82 start-page: 1 issue: 281 year: 2013 end-page: 24 ident: CR23 article-title: -Estimates for the evolving surface finite element method publication-title: Math. Comput. – volume: 47 start-page: 805 issue: 2 year: 2009 end-page: 807 ident: CR24 article-title: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces publication-title: SIAM J. Numer. Anal. – volume: 179 start-page: 683 issue: 2 year: 2014 end-page: 782 ident: CR41 article-title: Min-Max theory and the Willmore conjecture publication-title: Ann. Math. – volume: 28 start-page: 693 issue: 11–12 year: 1973 end-page: 703 ident: CR31 article-title: Elastic properties of lipid bilayers: theory and possible experiments publication-title: Zeitschrift für Naturforschung C – volume: 31 start-page: 225 issue: 1 year: 2008 end-page: 253 ident: CR4 article-title: Parametric approximation of Willmore flow and related geometric evolution equations publication-title: SIAM J. on Sci. Comput. – volume: 111 start-page: 55 issue: 1 year: 2008 end-page: 80 ident: CR28 article-title: Computational parametric Willmore flow publication-title: Numer. Math. – ident: CR13 – year: 1993 ident: CR50 publication-title: Riemannian Geometry – volume: 17 start-page: 189 issue: 2 year: 2015 end-page: 232 ident: CR43 article-title: Computational anisotropic Willmore flow publication-title: Interfaces Free Bound. – volume: 222 start-page: 441 issue: 1 year: 2007 end-page: 467 ident: CR2 article-title: A parametric finite element method for fourth order geometric evolution equations publication-title: J. Comput. Phys. – year: 2015 ident: CR48 publication-title: The Shape of Things: A Practical Guide to Differential Geometry and the Shape Derivative |
| SSID | ssj0017641 |
| Score | 2.4805822 |
| Snippet | A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 595 |
| SubjectTerms | Algorithms Consistency Convergence Curvature Error analysis Estimates Evolution Finite element method Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Numerical methods Polynomials Simulation Stability analysis Surface diffusion Theoretical Two dimensional flow |
| Title | A convergent evolving finite element algorithm for Willmore flow of closed surfaces |
| URI | https://link.springer.com/article/10.1007/s00211-021-01238-z https://www.proquest.com/docview/2603197339 |
| Volume | 149 |
| WOSCitedRecordID | wos000714852100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 0945-3245 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017641 issn: 0029-599X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PejB6VScTsnBo4UmaZrmOMThxSFsyG4lSRMdzFXaTmF_vUnWVhQveumlJZSXH-97ed_3HgDXXJE4kyYOrC-3AQpSNBDcmMBgI7Sx-Jwy6ZtNsPE4mc34Yy0KKxu2e5OS9Cd1K3Zz7siGvtiFv9bRBOttsENdtRkXo0-e2twBiyPUEDso57NaKvP7GN-A5Y9cqHcxo-7_fu4QHNSQEg43a-AIbOllD3Sbdg2w3r09sP_Qlmgtj8FkCD3j3IkvK6jtKeWuFqCZOxAK9YZVDsXiOS_m1csrtOAWussZR8yFZpF_wNxAtchLncFyVRhH7ToB09Hd9PY-qDssBG-IsioQKBQchzqkmmQEKcSkyKghRmZJJEOuNMGZSkKaUYKZ4gRFSiIlJAtVKAQ5BZ1lvtRnAEZEmgzLJFaJieLE1fwWGEmmhQ2JLKzog0Fj57TeJWWKXYtrO4GE98FNY9ev121FZW_c1D5Sb9x0ff63zy_AHnZT4yWEA9CpipW-BLvqvZqXxZVfPZ9OwMLA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrwsSq-zcGjhSZpm-a4iIuiLoKL7K0kaaIL61barsL-epNuW1G86KWXlFImj_m-zDczAOdc0SiVJvKsL7cEBavQE9wYzxAjtLH4PGSyajbB-v14OOQPdVJY0ajdm5BkdVK3yW7OHVnqSxz9tY7Gmy3CcuDa7DiO_vjUxg5YFOBG2BFyPqxTZX7_xjdg-SMWWrmY3ub_fm4LNmpIibrzNbANC3rSgc2mXQOqd28H1u_bEq3FDjx2UaU4d8mXJdL2lHJXC8iMHAhFeq4qR2L8nOWj8uUVWXCL3OWME-YiM84-UGaQGmeFTlExzY2Tdu3CoHc1uLz26g4L3hsOWekJ7AtOfO2HmqYUK8ykSENDjUzjQPpcaUpSFfthGlLCFKc4UBIrIZmvfCHoHixNsoneBxRQaVIi40jFJohiV_NbECyZFpYSWVhxAMeNnZN6lxQJcS2uOaOUH8BFY9ev4baicmXcxD6SyrjJ7PBvr5_B6vXg_i65u-nfHsEacdNUpRMew1KZT_UJrKj3clTkp9VK-gR66MWk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLb7NwaPFJmmb5ijqoqiLqMjeSp66sG6XbVXw15t02_WBF_HSS0sI0yTzTeb7ZgAOuKKJljYJnC93AQpWcSC4tYElVhjr8HnMZNVsgrXbaafDb76o-Cu2e5OSHGkafJWmfnk00PZoLHzzrsmFwcSHws7pBO-TMB25SMaTum7vHsZ5BJZEuCF5xJx3atnM72N8A5k_8qKVu2kt_n-iS7BQQ010PFobyzBh-iuw2LRxQPWuXoH563Hp1mIV7o5RxUT3oswSGXd6-SsHZLsenCIzYpsj0XvMh93y6Rk50Iv8pY0n7CLby99QbpHq5YXRqHgZWk_5WoP71tn9yXlQd14IBjhmZSBwKDgJTRgbqilWmEmhY0ut1GkkQ64MJVqlYaxjSpjiFEdKYiUkC1UoBF2HqX7eNxuAIiqtJjJNVGqjJPW1wAXBkhnhQiUHNzZhp7F5Vu-eIiO-9TVnlPJNOGxs_Pl6XGm5Mm7mHlll3Ox962-f78PszWkru7poX27DHPF_qVIZ7sBUOXwxuzCjXstuMdyrFtUHvAvOiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convergent+evolving+finite+element+algorithm+for+Willmore+flow+of+closed+surfaces&rft.jtitle=Numerische+Mathematik&rft.au=Kov%C3%A1cs%2C+Bal%C3%A1zs&rft.au=Li%2C+Buyang&rft.au=Lubich%2C+Christian&rft.date=2021-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=149&rft.issue=3&rft.spage=595&rft.epage=643&rft_id=info:doi/10.1007%2Fs00211-021-01238-z&rft.externalDocID=10_1007_s00211_021_01238_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |