Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders

Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature machine intelligence Jg. 2; H. 12; S. 800 - 809
Hauptverfasser: Lukassen, Soeren, Ten, Foo Wei, Adam, Lukas, Eils, Roland, Conrad, Christian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.12.2020
Nature Publishing Group
Schlagworte:
ISSN:2522-5839
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets. The wealth of data generated by single-cell RNA sequencing can be used to identify gene sets across cells, as well as to identify specific cells. Lukassen and colleagues propose a method combining matrix factorization and variational auto encoders that can capture both cross-cell and cell-specific information.
AbstractList Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets.The wealth of data generated by single-cell RNA sequencing can be used to identify gene sets across cells, as well as to identify specific cells. Lukassen and colleagues propose a method combining matrix factorization and variational auto encoders that can capture both cross-cell and cell-specific information.
Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets. The wealth of data generated by single-cell RNA sequencing can be used to identify gene sets across cells, as well as to identify specific cells. Lukassen and colleagues propose a method combining matrix factorization and variational auto encoders that can capture both cross-cell and cell-specific information.
Author Eils, Roland
Conrad, Christian
Adam, Lukas
Lukassen, Soeren
Ten, Foo Wei
Author_xml – sequence: 1
  givenname: Soeren
  orcidid: 0000-0001-7045-6327
  surname: Lukassen
  fullname: Lukassen, Soeren
  organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH)
– sequence: 2
  givenname: Foo Wei
  surname: Ten
  fullname: Ten, Foo Wei
  organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH)
– sequence: 3
  givenname: Lukas
  orcidid: 0000-0003-4182-5300
  surname: Adam
  fullname: Adam, Lukas
  organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH)
– sequence: 4
  givenname: Roland
  orcidid: 0000-0002-0034-4036
  surname: Eils
  fullname: Eils, Roland
  email: roland.eils@charite.de
  organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH), Health Data Science Unit, University Hospital Heidelberg
– sequence: 5
  givenname: Christian
  orcidid: 0000-0001-7036-342X
  surname: Conrad
  fullname: Conrad, Christian
  email: Christian.conrad@bihealth.de
  organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH)
BookMark eNpFkFtLAzEQhYMoWGv_gE8Bn6O57-ZRijco-KLPSzY7q1u2SU2y3n69aSv4MsPMdxjmnDN07IMHhC4YvWJU1NdJcq40oZwSSrk2xByhGVecE1ULc4oWKa1pIUxKReUMfd6DB5wg48H3EME7wH0MG5wG_zoCcTCOBb9PhZQN7my2eNpBbPHbdxuHDoceb2yOwxfurcshDj82D8Fj6zv8YeOwn-yI7ZRDORM6iOkcnfR2TLD463P0cnf7vHwgq6f7x-XNimyZqjKRbWX6ugZaqgJjtNV161yla2YrLWhlatW1rVZCdyCdsrISwqnOOauc0r2Yo8vD3W0MxUTKzTpMsXyTGq45o1JzKotKHFRpG4s1iP8qRptdsM0h2KYE2-yDbYz4BRXtcUo
Cites_doi 10.1016/S0168-9525(03)00175-6
10.1126/science.aam8940
10.1371/journal.pone.0115421
10.12688/f1000research.9005.3
10.1002/pro.3715
10.1093/nar/gky1055
10.1101/gad.976502
10.1038/s41598-018-24725-0
10.1093/bioinformatics/btn458
10.1186/s13059-016-0888-1
10.1016/j.cels.2018.10.015
10.1186/1471-2105-6-225
10.1038/75556
10.1093/bioinformatics/btv023
10.1038/ng.3624
10.1186/s12859-018-2190-6
10.1038/44565
10.1016/j.molcel.2010.05.004
10.1210/me.2013-1407
10.1016/j.stem.2016.05.010
10.1016/j.cell.2019.05.031
10.1073/pnas.1805681115
10.1016/j.cels.2016.09.002
10.1561/2200000056
10.1080/03610927408827101
10.1101/gr.212720.116
10.1038/nbt.4096
10.1038/s41467-019-09234-6
10.1242/dev.067645
10.1186/s13059-019-1850-9
10.1109/ACCESS.2018.2873385
10.1038/nbt.4042
10.1186/s13040-015-0059-z
10.1016/j.cmet.2016.08.020
10.1016/j.gpb.2018.08.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID 3V.
7SC
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1038/s42256-020-00269-9
DatabaseName ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-5839
EndPage 809
ExternalDocumentID 10_1038_s42256_020_00269_9
GroupedDBID 0R~
88I
AAEEF
AARCD
AAYZH
ABJNI
ABUWG
ACBWK
ADBBV
AFKRA
AFSHS
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
FSGXE
GNUQQ
HCIFZ
K7-
M2P
NNMJJ
ODYON
RNT
SIXXV
SNYQT
SOJ
TBHMF
3V.
7SC
7XB
8FD
8FE
8FG
8FK
AFANA
ATHPR
JQ2
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-p157t-4b79f88e09f85e996a68bcc7681a76307985dbb6536de4c5a4733c5dcca5c56f3
IEDL.DBID M2P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600016400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 13 06:29:48 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p157t-4b79f88e09f85e996a68bcc7681a76307985dbb6536de4c5a4733c5dcca5c56f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0034-4036
0000-0001-7036-342X
0000-0001-7045-6327
0000-0003-4182-5300
PQID 2621046204
PQPubID 5342773
PageCount 10
ParticipantIDs proquest_journals_2621046204
springer_journals_10_1038_s42256_020_00269_9
PublicationCentury 2000
PublicationDate 20201200
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Basingstoke
PublicationTitle Nature machine intelligence
PublicationTitleAbbrev Nat Mach Intell
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Duren (CR13) 2018; 115
Carbon (CR26) 2019; 47
Calinski, Harabasz (CR24) 1974; 3
Barolo, Posakony (CR1) 2002; 16
Lawlor (CR35) 2017; 27
Wang, Gu (CR21) 2018; 16
Stuart (CR8) 2019; 177
Bleazard, Lamb, Griffiths-Jones (CR3) 2015; 31
Chen, Wang, Smith, Zhang (CR4) 2008; 24
Ilicic (CR38) 2016; 17
Butler, Hoffman, Smibert, Papalexi, Satija (CR7) 2018; 36
Heinz (CR30) 2010; 38
CR45
CR44
CR43
Segerstolpe (CR36) 2016; 24
CR42
CR41
Kanehisa, Goto (CR47) 2000; 28
Lukassen, Bosch, Ekici, Winterpacht (CR29) 2018; 8
Law (CR46) 2018; 5
Muraro (CR34) 2016; 3
Yu, Zhou, Cichocki, Xie (CR15) 2018; 6
Grün (CR33) 2016; 19
CR19
CR18
CR17
Ashburner (CR25) 2000; 25
CR16
Daems, Martin, Brousseau, Tremblay (CR32) 2014; 28
CR14
Cao (CR23) 2017; 357
CR10
Tran (CR40) 2020; 21
Yu, Luscombe, Qian, Gerstein (CR28) 2003; 19
Danielsson (CR37) 2014; 9
Frost, Li, Moore (CR6) 2015; 8
Zhou (CR27) 2019; 10
Lee, Seung (CR11) 1999; 401
Wu, Tamayo, Zhang (CR12) 2018; 7
Jassal (CR49) 2020; 48
Bolcun-Filas (CR31) 2011; 138
Kang (CR39) 2018; 36
CR22
Kanehisa (CR48) 2019; 28
Hore (CR9) 2016; 48
Jambusaria (CR2) 2018; 19
Tomfohr, Lu, Kepler (CR5) 2005; 6
Kingma, Welling (CR20) 2019; 12
References_xml – ident: CR45
– ident: CR22
– volume: 19
  start-page: 422
  year: 2003
  end-page: 427
  ident: CR28
  article-title: Genomic analysis of gene expression relationships in transcriptional regulatory networks
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(03)00175-6
– volume: 357
  start-page: 661
  year: 2017
  end-page: 667
  ident: CR23
  article-title: Comprehensive single-cell transcriptional profiling of a multicellular organism
  publication-title: Science
  doi: 10.1126/science.aam8940
– volume: 9
  start-page: e115421
  year: 2014
  ident: CR37
  article-title: The human pancreas proteome defined by transcriptomics and antibody-based profiling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0115421
– volume: 5
  start-page: 1408
  year: 2018
  ident: CR46
  article-title: RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR
  publication-title: F1000 Res.
  doi: 10.12688/f1000research.9005.3
– ident: CR16
– volume: 28
  start-page: 1947
  year: 2019
  end-page: 1951
  ident: CR48
  article-title: Toward understanding the origin and evolution of cellular organisms
  publication-title: Protein Sci.
  doi: 10.1002/pro.3715
– volume: 47
  start-page: D330
  year: 2019
  end-page: D338
  ident: CR26
  article-title: The gene ontology resource: 20 years and still GOing strong
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1055
– volume: 16
  start-page: 1167
  year: 2002
  end-page: 1181
  ident: CR1
  article-title: Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling
  publication-title: Genes Dev
  doi: 10.1101/gad.976502
– volume: 8
  year: 2018
  ident: CR29
  article-title: Characterization of germ cell differentiation in the male mouse through single-cell RNA sequencing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24725-0
– ident: CR42
– volume: 24
  start-page: 2474
  year: 2008
  end-page: 2481
  ident: CR4
  article-title: Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn458
– volume: 17
  year: 2016
  ident: CR38
  article-title: Classification of low quality cells from single-cell RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0888-1
– volume: 7
  start-page: 656
  year: 2018
  end-page: 666
  ident: CR12
  article-title: Visualizing and interpreting single-cell gene expression datasets with similarity weighted nonnegative embedding
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2018.10.015
– ident: CR19
– volume: 6
  start-page: 225
  year: 2005
  ident: CR5
  article-title: Pathway level analysis of gene expression using singular value decomposition
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-6-225
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  ident: CR25
  article-title: Gene Ontology: tool for the unification of biology
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 31
  start-page: 1592
  year: 2015
  end-page: 1598
  ident: CR3
  article-title: Bias in microRNA functional enrichment analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv023
– volume: 48
  start-page: 1094
  year: 2016
  end-page: 1100
  ident: CR9
  article-title: Tensor decomposition for multiple-tissue gene expression experiments
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3624
– volume: 19
  start-page: 217
  year: 2018
  ident: CR2
  article-title: A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-018-2190-6
– volume: 48
  start-page: D498
  year: 2020
  end-page: D503
  ident: CR49
  article-title: The reactome pathway knowledgebase
  publication-title: Nucleic Acids Res.
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: CR11
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: CR30
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 28
  start-page: 886
  year: 2014
  end-page: 898
  ident: CR32
  article-title: MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2013-1407
– volume: 19
  start-page: 266
  year: 2016
  end-page: 277
  ident: CR33
  article-title: De novo prediction of stem cell identity using single-cell transcriptome data
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.05.010
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902
  ident: CR8
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– ident: CR18
– ident: CR43
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  ident: CR47
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Res.
– volume: 115
  start-page: 7723
  year: 2018
  end-page: 7728
  ident: CR13
  article-title: Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1805681115
– ident: CR14
– volume: 3
  start-page: 385
  year: 2016
  end-page: 394
  ident: CR34
  article-title: A single-cell transcriptome atlas of the human pancreas
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.09.002
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  ident: CR20
  article-title: An introduction to variational autoencoders
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000056
– ident: CR10
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: CR24
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat. Theor. Meth.
  doi: 10.1080/03610927408827101
– volume: 27
  start-page: 208
  year: 2017
  end-page: 222
  ident: CR35
  article-title: Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes
  publication-title: Genome Res
  doi: 10.1101/gr.212720.116
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: CR7
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 10
  year: 2019
  ident: CR27
  article-title: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09234-6
– volume: 138
  start-page: 3319
  year: 2011
  end-page: 3330
  ident: CR31
  article-title: A-MYB (MYBL1) transcription factor is a master regulator of male meiosis
  publication-title: Development
  doi: 10.1242/dev.067645
– ident: CR44
– volume: 21
  year: 2020
  ident: CR40
  article-title: A benchmark of batch-effect correction methods for single-cell RNA sequencing data
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1850-9
– ident: CR17
– volume: 6
  start-page: 58096
  year: 2018
  end-page: 58105
  ident: CR15
  article-title: Learning the hierarchical parts of objects by deep non-smooth nonnegative matrix factorization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873385
– volume: 36
  start-page: 89
  year: 2018
  end-page: 94
  ident: CR39
  article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4042
– volume: 8
  year: 2015
  ident: CR6
  article-title: Principal component gene set enrichment (PCGSE)
  publication-title: BioData Min.
  doi: 10.1186/s13040-015-0059-z
– volume: 24
  start-page: 593
  year: 2016
  end-page: 607
  ident: CR36
  article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.020
– ident: CR41
– volume: 16
  start-page: 320
  year: 2018
  end-page: 331
  ident: CR21
  article-title: VASC: dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/j.gpb.2018.08.003
SSID ssj0002144504
Score 2.1823866
Snippet Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells....
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 800
SubjectTerms 631/114/1305
631/114/2114
631/114/2785
Algorithms
Artificial neural networks
Bias
Coders
Datasets
Decomposition
Engineering
Factorization
Gene expression
Gene sequencing
Inference
Neural networks
Performance evaluation
Ribonucleic acid
RNA
Title Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders
URI https://link.springer.com/article/10.1038/s42256-020-00269-9
https://www.proquest.com/docview/2621046204
Volume 2
WOSCitedRecordID wos000600016400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  databaseCode: P5Z
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  eissn: 2522-5839
  dateEnd: 20241213
  titleUrlDefault: https://search.proquest.com/hightechjournals
  omitProxy: false
  ssIdentifier: ssj0002144504
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  databaseCode: K7-
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  eissn: 2522-5839
  dateEnd: 20241213
  titleUrlDefault: http://search.proquest.com/compscijour
  omitProxy: false
  ssIdentifier: ssj0002144504
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  databaseCode: BENPR
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  eissn: 2522-5839
  dateEnd: 20241213
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: false
  ssIdentifier: ssj0002144504
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  databaseCode: M2P
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  eissn: 2522-5839
  dateEnd: 20241213
  titleUrlDefault: https://search.proquest.com/sciencejournals
  omitProxy: false
  ssIdentifier: ssj0002144504
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEG58HbxEJYoaXergMY0z_ZqeU1BRBHFZJAHxMvQzEeKuOuPr36drtleJBy9e-jANw9BVXVP11VdVhOwpFplVltHIvaSC2xKBJk-Zky54I1Ta64dNVMOhvrysRxlwazOtcmYTe0PtJw4x8n2mGKYjWSF-3N5RnBqF2dU8QmOeLCbPpkRK1zkbvWIs2A5MFiLXyhRc77ci6S-ybrGcmqma_u9ZvkuG9v-Yk5XPft0q-ZK9SziYqsMamQvjr-QJW0tDGzq4nlX3AVaVAMIEfwNF7B4ypTo9ASSNAvLhf4OBPy9Y0gWTCDfYzP8ZpgN6cvUmmLGHxxRuZ0gRzEM3wdaYSI9eJ79Ojn8endI8b4HelrLqqLBVHbUORVplSIGQUdo6lwKS0iQzVFS1lt5aJbnyQThpRMW5kz4pgXRSRb5BFsaTcdgkEINgxvlC-dKKyEobnQk6Wq915CKwLbIzO8cmX5q2eTvELfJ9Jom37T5dznUzlWGTZNj0Mmzq7Y_f9o0sM5R4T0LZIQvd_UPYJUvusbtu7wdk8fB4OLoYkPmzig56BUrrSF79AwCb0Ns
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9VAEJ4gmuhFNGpEQeegNze0-6vbgyFGJRDwhQMm3Or-xJfoe_haQP4p_0Z2-lqJHrxx8NJDN9lkO9_uTme-bwbgleaJO-04SyIoJoUrKdAUGPfKx2ClzmN9s4lqMjHHx_XhCvwatTBEqxzPxP6gDnNPMfItrjmlI3kht09_MOoaRdnVsYXGEhb78fIi_7K1b_c-ZPu-5nzn49H7XTZ0FWCnpao6Jl1VJ2NikZ8qZnffauO8z253afNmK6raqOCcVkKHKL2yshLCq5CXqrzSSeR5b8FtSZXFiCrID3_HdKj8mCrkoM0phNlqZd4vxPIl-TbXNfvTk_0r-drfaTtr_9vXeAD3B-8Z3y3h_hBW4uwRXFDpbGxjh9NRvYikmkEKg3yLjHITOFDG8xskUiwS3_8ELX69JMkazhN-p2YFP3HZgGhQp6KdBTy3i-kQMkV71s2p9CfRvx_D5xtZ6xNYnc1n8SlgipJbHwodSicTL13yNprkgjFJyMjXYWO0WzMcCm1zbbR1eDNa_nq4pwMI0ywx02TMND1mmvrZv2d7CXd3jz4dNAd7k_3ncI8T2nrCzQasdouzuAl3_Hk3bRcvergifLlpRFwBIHEq0Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXHgJEocAc4Ia1iV9xDgghyoqqaLUHkCouwc-yEuyWTdrSv8avw5NNqODArQcuOcSSJWc-O-OZ75sBeKZ54k47zpIIiknhSgo0Bca98jFYqfNY32yims3M4WE934KfoxaGaJXjmdgf1GHlKUY-4ZpTOpIXcpIGWsR8b_rq-DujDlKUaR3baWwgchDPz_L1rX25v5dt_Zzz6dsPb96xocMAOy5V1THpqjoZE4v8VDG7_lYb5312wUubN15R1UYF57QSOkTplZWVEF6FvGzllU4iz3sFrlb5jkl0wrn69Du-Q6XIVCEHnU4hzKSVee8Q45ek3FzX7E-v9q9EbP9_m976n7_Mbbg5eNX4erMN7sBWXN6FMyqpjW3scDGqGpHUNEjhka-RUc4CByp5foNElkXSARyhxS_nJGXDVcJv1MTgB24aEw2qVbTLgKd2vRhCqWhPuhWVBCVa-D34eClrvQ_by9UyPgBMUXLrQ6FD6WTipUveRpNcMCYJGfkO7I42bIbDom0uDLgDL0YUXAz3NAFhmg1-moyfpsdPUz_892xP4XoGQvN-f3bwCG5wAl7Pw9mF7W59Eh_DNX_aLdr1kx65CJ8vGxC_ABWiM70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+set+inference+from+single-cell+sequencing+data+using+a+hybrid+of+matrix+factorization+and+variational+autoencoders&rft.jtitle=Nature+machine+intelligence&rft.au=Lukassen+Soeren&rft.au=Ten+Foo+Wei&rft.au=Lukas%2C+Adam&rft.au=Eils+Roland&rft.date=2020-12-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5839&rft.volume=2&rft.issue=12&rft.spage=800&rft.epage=809&rft_id=info:doi/10.1038%2Fs42256-020-00269-9&rft.externalDBID=HAS_PDF_LINK