Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders
Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell p...
Gespeichert in:
| Veröffentlicht in: | Nature machine intelligence Jg. 2; H. 12; S. 800 - 809 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.12.2020
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 2522-5839 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets.
The wealth of data generated by single-cell RNA sequencing can be used to identify gene sets across cells, as well as to identify specific cells. Lukassen and colleagues propose a method combining matrix factorization and variational auto encoders that can capture both cross-cell and cell-specific information. |
|---|---|
| AbstractList | Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets.The wealth of data generated by single-cell RNA sequencing can be used to identify gene sets across cells, as well as to identify specific cells. Lukassen and colleagues propose a method combining matrix factorization and variational auto encoders that can capture both cross-cell and cell-specific information. Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells. These growing datasets allow us to model gene sets in biological networks at an unprecedented level of detail, in spite of heterogeneous cell populations. Here, we propose a deep neural network model that is a hybrid of matrix factorization and variational autoencoders, which we call restricted latent variational autoencoder (resVAE). The model uses weights as factorized matrices to obtain gene sets, while class-specific inputs to the latent variable space facilitate a plausible identification of cell types. This artificial neural network model seamlessly integrates functional gene set inference, experimental covariate effect isolation, and static gene identification, which we conceptually demonstrate here for four single-cell RNA sequencing datasets. The wealth of data generated by single-cell RNA sequencing can be used to identify gene sets across cells, as well as to identify specific cells. Lukassen and colleagues propose a method combining matrix factorization and variational auto encoders that can capture both cross-cell and cell-specific information. |
| Author | Eils, Roland Conrad, Christian Adam, Lukas Lukassen, Soeren Ten, Foo Wei |
| Author_xml | – sequence: 1 givenname: Soeren orcidid: 0000-0001-7045-6327 surname: Lukassen fullname: Lukassen, Soeren organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH) – sequence: 2 givenname: Foo Wei surname: Ten fullname: Ten, Foo Wei organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH) – sequence: 3 givenname: Lukas orcidid: 0000-0003-4182-5300 surname: Adam fullname: Adam, Lukas organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH) – sequence: 4 givenname: Roland orcidid: 0000-0002-0034-4036 surname: Eils fullname: Eils, Roland email: roland.eils@charite.de organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH), Health Data Science Unit, University Hospital Heidelberg – sequence: 5 givenname: Christian orcidid: 0000-0001-7036-342X surname: Conrad fullname: Conrad, Christian email: Christian.conrad@bihealth.de organization: Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin Institute of Health (BIH) |
| BookMark | eNpFkFtLAzEQhYMoWGv_gE8Bn6O57-ZRijco-KLPSzY7q1u2SU2y3n69aSv4MsPMdxjmnDN07IMHhC4YvWJU1NdJcq40oZwSSrk2xByhGVecE1ULc4oWKa1pIUxKReUMfd6DB5wg48H3EME7wH0MG5wG_zoCcTCOBb9PhZQN7my2eNpBbPHbdxuHDoceb2yOwxfurcshDj82D8Fj6zv8YeOwn-yI7ZRDORM6iOkcnfR2TLD463P0cnf7vHwgq6f7x-XNimyZqjKRbWX6ugZaqgJjtNV161yla2YrLWhlatW1rVZCdyCdsrISwqnOOauc0r2Yo8vD3W0MxUTKzTpMsXyTGq45o1JzKotKHFRpG4s1iP8qRptdsM0h2KYE2-yDbYz4BRXtcUo |
| Cites_doi | 10.1016/S0168-9525(03)00175-6 10.1126/science.aam8940 10.1371/journal.pone.0115421 10.12688/f1000research.9005.3 10.1002/pro.3715 10.1093/nar/gky1055 10.1101/gad.976502 10.1038/s41598-018-24725-0 10.1093/bioinformatics/btn458 10.1186/s13059-016-0888-1 10.1016/j.cels.2018.10.015 10.1186/1471-2105-6-225 10.1038/75556 10.1093/bioinformatics/btv023 10.1038/ng.3624 10.1186/s12859-018-2190-6 10.1038/44565 10.1016/j.molcel.2010.05.004 10.1210/me.2013-1407 10.1016/j.stem.2016.05.010 10.1016/j.cell.2019.05.031 10.1073/pnas.1805681115 10.1016/j.cels.2016.09.002 10.1561/2200000056 10.1080/03610927408827101 10.1101/gr.212720.116 10.1038/nbt.4096 10.1038/s41467-019-09234-6 10.1242/dev.067645 10.1186/s13059-019-1850-9 10.1109/ACCESS.2018.2873385 10.1038/nbt.4042 10.1186/s13040-015-0059-z 10.1016/j.cmet.2016.08.020 10.1016/j.gpb.2018.08.003 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
| DBID | 3V. 7SC 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1038/s42256-020-00269-9 |
| DatabaseName | ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2522-5839 |
| EndPage | 809 |
| ExternalDocumentID | 10_1038_s42256_020_00269_9 |
| GroupedDBID | 0R~ 88I AAEEF AARCD AAYZH ABJNI ABUWG ACBWK ADBBV AFKRA AFSHS AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO EBS EJD FSGXE GNUQQ HCIFZ K7- M2P NNMJJ ODYON RNT SIXXV SNYQT SOJ TBHMF 3V. 7SC 7XB 8FD 8FE 8FG 8FK AFANA ATHPR JQ2 L7M L~C L~D P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-p157t-4b79f88e09f85e996a68bcc7681a76307985dbb6536de4c5a4733c5dcca5c56f3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600016400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 13 06:29:48 EDT 2025 Fri Feb 21 02:37:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p157t-4b79f88e09f85e996a68bcc7681a76307985dbb6536de4c5a4733c5dcca5c56f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0034-4036 0000-0001-7036-342X 0000-0001-7045-6327 0000-0003-4182-5300 |
| PQID | 2621046204 |
| PQPubID | 5342773 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2621046204 springer_journals_10_1038_s42256_020_00269_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20201200 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Basingstoke |
| PublicationTitle | Nature machine intelligence |
| PublicationTitleAbbrev | Nat Mach Intell |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Duren (CR13) 2018; 115 Carbon (CR26) 2019; 47 Calinski, Harabasz (CR24) 1974; 3 Barolo, Posakony (CR1) 2002; 16 Lawlor (CR35) 2017; 27 Wang, Gu (CR21) 2018; 16 Stuart (CR8) 2019; 177 Bleazard, Lamb, Griffiths-Jones (CR3) 2015; 31 Chen, Wang, Smith, Zhang (CR4) 2008; 24 Ilicic (CR38) 2016; 17 Butler, Hoffman, Smibert, Papalexi, Satija (CR7) 2018; 36 Heinz (CR30) 2010; 38 CR45 CR44 CR43 Segerstolpe (CR36) 2016; 24 CR42 CR41 Kanehisa, Goto (CR47) 2000; 28 Lukassen, Bosch, Ekici, Winterpacht (CR29) 2018; 8 Law (CR46) 2018; 5 Muraro (CR34) 2016; 3 Yu, Zhou, Cichocki, Xie (CR15) 2018; 6 Grün (CR33) 2016; 19 CR19 CR18 CR17 Ashburner (CR25) 2000; 25 CR16 Daems, Martin, Brousseau, Tremblay (CR32) 2014; 28 CR14 Cao (CR23) 2017; 357 CR10 Tran (CR40) 2020; 21 Yu, Luscombe, Qian, Gerstein (CR28) 2003; 19 Danielsson (CR37) 2014; 9 Frost, Li, Moore (CR6) 2015; 8 Zhou (CR27) 2019; 10 Lee, Seung (CR11) 1999; 401 Wu, Tamayo, Zhang (CR12) 2018; 7 Jassal (CR49) 2020; 48 Bolcun-Filas (CR31) 2011; 138 Kang (CR39) 2018; 36 CR22 Kanehisa (CR48) 2019; 28 Hore (CR9) 2016; 48 Jambusaria (CR2) 2018; 19 Tomfohr, Lu, Kepler (CR5) 2005; 6 Kingma, Welling (CR20) 2019; 12 |
| References_xml | – ident: CR45 – ident: CR22 – volume: 19 start-page: 422 year: 2003 end-page: 427 ident: CR28 article-title: Genomic analysis of gene expression relationships in transcriptional regulatory networks publication-title: Trends Genet. doi: 10.1016/S0168-9525(03)00175-6 – volume: 357 start-page: 661 year: 2017 end-page: 667 ident: CR23 article-title: Comprehensive single-cell transcriptional profiling of a multicellular organism publication-title: Science doi: 10.1126/science.aam8940 – volume: 9 start-page: e115421 year: 2014 ident: CR37 article-title: The human pancreas proteome defined by transcriptomics and antibody-based profiling publication-title: PLoS One doi: 10.1371/journal.pone.0115421 – volume: 5 start-page: 1408 year: 2018 ident: CR46 article-title: RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR publication-title: F1000 Res. doi: 10.12688/f1000research.9005.3 – ident: CR16 – volume: 28 start-page: 1947 year: 2019 end-page: 1951 ident: CR48 article-title: Toward understanding the origin and evolution of cellular organisms publication-title: Protein Sci. doi: 10.1002/pro.3715 – volume: 47 start-page: D330 year: 2019 end-page: D338 ident: CR26 article-title: The gene ontology resource: 20 years and still GOing strong publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1055 – volume: 16 start-page: 1167 year: 2002 end-page: 1181 ident: CR1 article-title: Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling publication-title: Genes Dev doi: 10.1101/gad.976502 – volume: 8 year: 2018 ident: CR29 article-title: Characterization of germ cell differentiation in the male mouse through single-cell RNA sequencing publication-title: Sci. Rep. doi: 10.1038/s41598-018-24725-0 – ident: CR42 – volume: 24 start-page: 2474 year: 2008 end-page: 2481 ident: CR4 article-title: Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn458 – volume: 17 year: 2016 ident: CR38 article-title: Classification of low quality cells from single-cell RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-016-0888-1 – volume: 7 start-page: 656 year: 2018 end-page: 666 ident: CR12 article-title: Visualizing and interpreting single-cell gene expression datasets with similarity weighted nonnegative embedding publication-title: Cell Syst doi: 10.1016/j.cels.2018.10.015 – ident: CR19 – volume: 6 start-page: 225 year: 2005 ident: CR5 article-title: Pathway level analysis of gene expression using singular value decomposition publication-title: BMC Bioinf. doi: 10.1186/1471-2105-6-225 – volume: 25 start-page: 25 year: 2000 end-page: 29 ident: CR25 article-title: Gene Ontology: tool for the unification of biology publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 31 start-page: 1592 year: 2015 end-page: 1598 ident: CR3 article-title: Bias in microRNA functional enrichment analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv023 – volume: 48 start-page: 1094 year: 2016 end-page: 1100 ident: CR9 article-title: Tensor decomposition for multiple-tissue gene expression experiments publication-title: Nat. Genet. doi: 10.1038/ng.3624 – volume: 19 start-page: 217 year: 2018 ident: CR2 article-title: A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks publication-title: BMC Bioinf. doi: 10.1186/s12859-018-2190-6 – volume: 48 start-page: D498 year: 2020 end-page: D503 ident: CR49 article-title: The reactome pathway knowledgebase publication-title: Nucleic Acids Res. – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: CR11 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: CR30 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 28 start-page: 886 year: 2014 end-page: 898 ident: CR32 article-title: MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1 publication-title: Mol. Endocrinol. doi: 10.1210/me.2013-1407 – volume: 19 start-page: 266 year: 2016 end-page: 277 ident: CR33 article-title: De novo prediction of stem cell identity using single-cell transcriptome data publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.05.010 – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: CR8 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – ident: CR18 – ident: CR43 – volume: 28 start-page: 27 year: 2000 end-page: 30 ident: CR47 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Res. – volume: 115 start-page: 7723 year: 2018 end-page: 7728 ident: CR13 article-title: Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1805681115 – ident: CR14 – volume: 3 start-page: 385 year: 2016 end-page: 394 ident: CR34 article-title: A single-cell transcriptome atlas of the human pancreas publication-title: Cell Syst doi: 10.1016/j.cels.2016.09.002 – volume: 12 start-page: 307 year: 2019 end-page: 392 ident: CR20 article-title: An introduction to variational autoencoders publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000056 – ident: CR10 – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: CR24 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat. Theor. Meth. doi: 10.1080/03610927408827101 – volume: 27 start-page: 208 year: 2017 end-page: 222 ident: CR35 article-title: Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes publication-title: Genome Res doi: 10.1101/gr.212720.116 – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: CR7 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 10 year: 2019 ident: CR27 article-title: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets publication-title: Nat. Commun. doi: 10.1038/s41467-019-09234-6 – volume: 138 start-page: 3319 year: 2011 end-page: 3330 ident: CR31 article-title: A-MYB (MYBL1) transcription factor is a master regulator of male meiosis publication-title: Development doi: 10.1242/dev.067645 – ident: CR44 – volume: 21 year: 2020 ident: CR40 article-title: A benchmark of batch-effect correction methods for single-cell RNA sequencing data publication-title: Genome Biol doi: 10.1186/s13059-019-1850-9 – ident: CR17 – volume: 6 start-page: 58096 year: 2018 end-page: 58105 ident: CR15 article-title: Learning the hierarchical parts of objects by deep non-smooth nonnegative matrix factorization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873385 – volume: 36 start-page: 89 year: 2018 end-page: 94 ident: CR39 article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4042 – volume: 8 year: 2015 ident: CR6 article-title: Principal component gene set enrichment (PCGSE) publication-title: BioData Min. doi: 10.1186/s13040-015-0059-z – volume: 24 start-page: 593 year: 2016 end-page: 607 ident: CR36 article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.020 – ident: CR41 – volume: 16 start-page: 320 year: 2018 end-page: 331 ident: CR21 article-title: VASC: dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder publication-title: Genom. Proteom. Bioinform. doi: 10.1016/j.gpb.2018.08.003 |
| SSID | ssj0002144504 |
| Score | 2.1823866 |
| Snippet | Recent advances in single-cell RNA sequencing have driven the simultaneous measurement of the expression of thousands of genes in thousands of single cells.... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 800 |
| SubjectTerms | 631/114/1305 631/114/2114 631/114/2785 Algorithms Artificial neural networks Bias Coders Datasets Decomposition Engineering Factorization Gene expression Gene sequencing Inference Neural networks Performance evaluation Ribonucleic acid RNA |
| Title | Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders |
| URI | https://link.springer.com/article/10.1038/s42256-020-00269-9 https://www.proquest.com/docview/2621046204 |
| Volume | 2 |
| WOSCitedRecordID | wos000600016400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database databaseCode: P5Z dateStart: 20190101 customDbUrl: isFulltext: true eissn: 2522-5839 dateEnd: 20241213 titleUrlDefault: https://search.proquest.com/hightechjournals omitProxy: false ssIdentifier: ssj0002144504 providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database databaseCode: K7- dateStart: 20190101 customDbUrl: isFulltext: true eissn: 2522-5839 dateEnd: 20241213 titleUrlDefault: http://search.proquest.com/compscijour omitProxy: false ssIdentifier: ssj0002144504 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) databaseCode: BENPR dateStart: 20190101 customDbUrl: isFulltext: true eissn: 2522-5839 dateEnd: 20241213 titleUrlDefault: https://www.proquest.com/central omitProxy: false ssIdentifier: ssj0002144504 providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database databaseCode: M2P dateStart: 20190101 customDbUrl: isFulltext: true eissn: 2522-5839 dateEnd: 20241213 titleUrlDefault: https://search.proquest.com/sciencejournals omitProxy: false ssIdentifier: ssj0002144504 providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEG58HbxEJYoaXergMY0z_ZqeU1BRBHFZJAHxMvQzEeKuOuPr36drtleJBy9e-jANw9BVXVP11VdVhOwpFplVltHIvaSC2xKBJk-Zky54I1Ta64dNVMOhvrysRxlwazOtcmYTe0PtJw4x8n2mGKYjWSF-3N5RnBqF2dU8QmOeLCbPpkRK1zkbvWIs2A5MFiLXyhRc77ci6S-ybrGcmqma_u9ZvkuG9v-Yk5XPft0q-ZK9SziYqsMamQvjr-QJW0tDGzq4nlX3AVaVAMIEfwNF7B4ypTo9ASSNAvLhf4OBPy9Y0gWTCDfYzP8ZpgN6cvUmmLGHxxRuZ0gRzEM3wdaYSI9eJ79Ojn8endI8b4HelrLqqLBVHbUORVplSIGQUdo6lwKS0iQzVFS1lt5aJbnyQThpRMW5kz4pgXRSRb5BFsaTcdgkEINgxvlC-dKKyEobnQk6Wq915CKwLbIzO8cmX5q2eTvELfJ9Jom37T5dznUzlWGTZNj0Mmzq7Y_f9o0sM5R4T0LZIQvd_UPYJUvusbtu7wdk8fB4OLoYkPmzig56BUrrSF79AwCb0Ns |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9VAEJ4gmuhFNGpEQeegNze0-6vbgyFGJRDwhQMm3Or-xJfoe_haQP4p_0Z2-lqJHrxx8NJDN9lkO9_uTme-bwbgleaJO-04SyIoJoUrKdAUGPfKx2ClzmN9s4lqMjHHx_XhCvwatTBEqxzPxP6gDnNPMfItrjmlI3kht09_MOoaRdnVsYXGEhb78fIi_7K1b_c-ZPu-5nzn49H7XTZ0FWCnpao6Jl1VJ2NikZ8qZnffauO8z253afNmK6raqOCcVkKHKL2yshLCq5CXqrzSSeR5b8FtSZXFiCrID3_HdKj8mCrkoM0phNlqZd4vxPIl-TbXNfvTk_0r-drfaTtr_9vXeAD3B-8Z3y3h_hBW4uwRXFDpbGxjh9NRvYikmkEKg3yLjHITOFDG8xskUiwS3_8ELX69JMkazhN-p2YFP3HZgGhQp6KdBTy3i-kQMkV71s2p9CfRvx_D5xtZ6xNYnc1n8SlgipJbHwodSicTL13yNprkgjFJyMjXYWO0WzMcCm1zbbR1eDNa_nq4pwMI0ywx02TMND1mmvrZv2d7CXd3jz4dNAd7k_3ncI8T2nrCzQasdouzuAl3_Hk3bRcvergifLlpRFwBIHEq0Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXHgJEocAc4Ia1iV9xDgghyoqqaLUHkCouwc-yEuyWTdrSv8avw5NNqODArQcuOcSSJWc-O-OZ75sBeKZ54k47zpIIiknhSgo0Bca98jFYqfNY32yims3M4WE934KfoxaGaJXjmdgf1GHlKUY-4ZpTOpIXcpIGWsR8b_rq-DujDlKUaR3baWwgchDPz_L1rX25v5dt_Zzz6dsPb96xocMAOy5V1THpqjoZE4v8VDG7_lYb5312wUubN15R1UYF57QSOkTplZWVEF6FvGzllU4iz3sFrlb5jkl0wrn69Du-Q6XIVCEHnU4hzKSVee8Q45ek3FzX7E-v9q9EbP9_m976n7_Mbbg5eNX4erMN7sBWXN6FMyqpjW3scDGqGpHUNEjhka-RUc4CByp5foNElkXSARyhxS_nJGXDVcJv1MTgB24aEw2qVbTLgKd2vRhCqWhPuhWVBCVa-D34eClrvQ_by9UyPgBMUXLrQ6FD6WTipUveRpNcMCYJGfkO7I42bIbDom0uDLgDL0YUXAz3NAFhmg1-moyfpsdPUz_892xP4XoGQvN-f3bwCG5wAl7Pw9mF7W59Eh_DNX_aLdr1kx65CJ8vGxC_ABWiM70 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+set+inference+from+single-cell+sequencing+data+using+a+hybrid+of+matrix+factorization+and+variational+autoencoders&rft.jtitle=Nature+machine+intelligence&rft.au=Lukassen+Soeren&rft.au=Ten+Foo+Wei&rft.au=Lukas%2C+Adam&rft.au=Eils+Roland&rft.date=2020-12-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5839&rft.volume=2&rft.issue=12&rft.spage=800&rft.epage=809&rft_id=info:doi/10.1038%2Fs42256-020-00269-9&rft.externalDBID=HAS_PDF_LINK |