Rietveld Refinement of MIL‐160 and Its Structural Flexibility Upon H2O and N2 Adsorption

The porous metal‐organic framework (MOF) MIL‐160 [Al(OH)(O2C‐C4H2O‐CO2)] was investigated by means of high‐resolution powder X‐ray diffraction experiments using synchrotron radiation. The structures of the dehydrated, hydrated and nitrogen loaded forms of MIL‐160 are refined by the Rietveld method....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of inorganic chemistry Ročník 2018; číslo 32; s. 3626 - 3632
Hlavní autoři: Wahiduzzaman, Mohammad, Lenzen, Dirk, Maurin, Guillaume, Stock, Norbert, Wharmby, Michael T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 31.08.2018
Témata:
ISSN:1434-1948, 1099-0682
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The porous metal‐organic framework (MOF) MIL‐160 [Al(OH)(O2C‐C4H2O‐CO2)] was investigated by means of high‐resolution powder X‐ray diffraction experiments using synchrotron radiation. The structures of the dehydrated, hydrated and nitrogen loaded forms of MIL‐160 are refined by the Rietveld method. The structure of the hydrated form, as postulated from solid state NMR and DFT calculations, is confirmed. The host–guest and thermal responses of this compound are also investigated. Adsorption of water is found to induce a phase transition from I41/amd (the dehydrated structure) to I41md (the hydrated structure), mediated by flexibility of the MOF framework. Water molecules were observed to arrange themselves with an ice‐like geometry. Conversely, adsorption of more weakly interacting N2 into the structure or thermal treatment (cooling the sample from 400 to 80 K) leads to no phase transition, indicating that the phase transition is induced by the strong interactions of H2O with the framework. The accuracy of the refined structures is investigated by DFT calculations, which show very small deviations in optimised atomic positions and lattice parameters. The structure of Al‐MOF MIL‐160 [Al{OH(O2C‐C4H2O‐CO2)}], postulated from solid state NMR and DFT calculations, is confirmed by Rietveld refinement of high‐resolution synchrotron powder X‐ray diffraction. Its H2O and N2 host–guest complexes were also refined & demonstrate structural flexibility. DFT calculations demonstrate the high‐accuracy of the refined structures.
AbstractList The porous metal‐organic framework (MOF) MIL‐160 [Al(OH)(O2C‐C4H2O‐CO2)] was investigated by means of high‐resolution powder X‐ray diffraction experiments using synchrotron radiation. The structures of the dehydrated, hydrated and nitrogen loaded forms of MIL‐160 are refined by the Rietveld method. The structure of the hydrated form, as postulated from solid state NMR and DFT calculations, is confirmed. The host–guest and thermal responses of this compound are also investigated. Adsorption of water is found to induce a phase transition from I41/amd (the dehydrated structure) to I41md (the hydrated structure), mediated by flexibility of the MOF framework. Water molecules were observed to arrange themselves with an ice‐like geometry. Conversely, adsorption of more weakly interacting N2 into the structure or thermal treatment (cooling the sample from 400 to 80 K) leads to no phase transition, indicating that the phase transition is induced by the strong interactions of H2O with the framework. The accuracy of the refined structures is investigated by DFT calculations, which show very small deviations in optimised atomic positions and lattice parameters. The structure of Al‐MOF MIL‐160 [Al{OH(O2C‐C4H2O‐CO2)}], postulated from solid state NMR and DFT calculations, is confirmed by Rietveld refinement of high‐resolution synchrotron powder X‐ray diffraction. Its H2O and N2 host–guest complexes were also refined & demonstrate structural flexibility. DFT calculations demonstrate the high‐accuracy of the refined structures.
The porous metal‐organic framework (MOF) MIL‐160 [Al(OH)(O2C‐C4H2O‐CO2)] was investigated by means of high‐resolution powder X‐ray diffraction experiments using synchrotron radiation. The structures of the dehydrated, hydrated and nitrogen loaded forms of MIL‐160 are refined by the Rietveld method. The structure of the hydrated form, as postulated from solid state NMR and DFT calculations, is confirmed. The host–guest and thermal responses of this compound are also investigated. Adsorption of water is found to induce a phase transition from I41/amd (the dehydrated structure) to I41md (the hydrated structure), mediated by flexibility of the MOF framework. Water molecules were observed to arrange themselves with an ice‐like geometry. Conversely, adsorption of more weakly interacting N2 into the structure or thermal treatment (cooling the sample from 400 to 80 K) leads to no phase transition, indicating that the phase transition is induced by the strong interactions of H2O with the framework. The accuracy of the refined structures is investigated by DFT calculations, which show very small deviations in optimised atomic positions and lattice parameters.
Author Wharmby, Michael T.
Maurin, Guillaume
Stock, Norbert
Wahiduzzaman, Mohammad
Lenzen, Dirk
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0003-2025-4115
  surname: Wahiduzzaman
  fullname: Wahiduzzaman, Mohammad
  organization: UMR‐5253 Universite Montpellier CNRS ENSCM
– sequence: 2
  givenname: Dirk
  surname: Lenzen
  fullname: Lenzen, Dirk
  organization: Christian‐Albrechts‐Universität zu Kiel
– sequence: 3
  givenname: Guillaume
  orcidid: 0000-0002-2096-0450
  surname: Maurin
  fullname: Maurin, Guillaume
  organization: UMR‐5253 Universite Montpellier CNRS ENSCM
– sequence: 4
  givenname: Norbert
  orcidid: 0000-0002-0339-7352
  surname: Stock
  fullname: Stock, Norbert
  organization: Christian‐Albrechts‐Universität zu Kiel
– sequence: 5
  givenname: Michael T.
  orcidid: 0000-0002-1764-0501
  surname: Wharmby
  fullname: Wharmby, Michael T.
  email: michael.wharmby@desy.de
  organization: Deutsches Elektronen‐Synchrotron (DESY)
BookMark eNo9kMFOwkAURScGEwHdup7EdfHNm7GdWRICUoOSoGzcNFM6TYaUaW2nKjs_wW_0SyxiWL37kpN7kzMgPVc6Q8g1gxEDwFuztZsRApMAHPkZ6TNQKoBQYq_LgouAKSEvyKBpttAxwMM-eV1Z499NkdGVya0zO-M8LXP6GC9-vr5ZCFS7jMa-oc--bje-rXVBZ4X5tKktrN_TdVU6OsflH_eEdJw1ZV15W7pLcp7rojFX_3dI1rPpy2QeLJb38WS8CComJA8MqlTlYc4zEYlII4-ySKR4p5mUqUk1QwSNOodMh1medjHCjQKDqGR44Ifk5thb1eVbaxqfbMu2dt1kgqAiIUBGYUepI_VhC7NPqtrudL1PGCQHeclBXnKSl0wf4snp478Z4maA
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.201800323
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage 3632
ExternalDocumentID EJIC201800323
Genre article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: CHESDENS
– fundername: Institut Universitaire de France
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACNCT
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
1OB
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p1483-e29b9f6f3d4747a237d74b25a188beba1220a2af0da6dfba2a72c90e229867a23
IEDL.DBID DRFUL
ISSN 1434-1948
IngestDate Wed Aug 13 08:13:05 EDT 2025
Wed Jan 22 16:43:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1483-e29b9f6f3d4747a237d74b25a188beba1220a2af0da6dfba2a72c90e229867a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0339-7352
0000-0002-1764-0501
0000-0003-2025-4115
0000-0002-2096-0450
PQID 2097440876
PQPubID 2030176
PageCount 7
ParticipantIDs proquest_journals_2097440876
wiley_primary_10_1002_ejic_201800323_EJIC201800323
PublicationCentury 2000
PublicationDate August 31, 2018
PublicationDateYYYYMMDD 2018-08-31
PublicationDate_xml – month: 08
  year: 2018
  text: August 31, 2018
  day: 31
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2012; 2012
2013; 25
2007; 127
2009; 80
2013; 46
2004; 25
2005; 114
2013; 42
2009
2007
2017; 356
2011; 18
2014; 136
1996; 54
2017; 139
2014; 43
2018; 47
1996; 77
2016; 4
2014; 4
2015; 27
2015; 115
2005; 167
2000; 13
2017; 10
1999; 15
1992; 114
2017; 56
2014; 38
2010; 132
2015 2015; 54 127
2018; 30
2016
2017; 121
2012; 24
2012; 706–709
1998; 58
References_xml – volume: 25
  start-page: 17
  year: 2013
  end-page: 26
  publication-title: Chem. Mater.
– year: 2009
– volume: 80
  start-page: 075107
  year: 2009
  end-page: 075109
  publication-title: Rev. Sci. Instrum.
– volume: 121
  start-page: 26822
  year: 2017
  end-page: 26832
  publication-title: J. Phys. Chem. C
– volume: 25
  start-page: 1463
  year: 2004
  end-page: 1473
  publication-title: J. Comput. Chem.
– volume: 114
  start-page: 145
  year: 2005
  end-page: 152
  publication-title: Theor. Chem. Acc.
– volume: 56
  start-page: 8393
  year: 2017
  end-page: 8398
  publication-title: Ind. Eng. Chem. Res.
– volume: 139
  start-page: 10715
  year: 2017
  end-page: 10722
  publication-title: J. Am. Chem. Soc.
– year: 2007
– volume: 46
  start-page: 1231
  year: 2013
  end-page: 1235
  publication-title: J. Appl. Crystallogr.
– volume: 30
  start-page: 1705869
  year: 2018
  publication-title: Adv. Mater.
– volume: 13
  start-page: 237
  year: 2000
  end-page: 242
  publication-title: Top. Catal.
– volume: 15
  start-page: 305
  year: 1999
  end-page: 308
  publication-title: Langmuir
– volume: 42
  start-page: 15967
  year: 2013
  end-page: 15973
  publication-title: Dalton Trans.
– volume: 136
  start-page: 4369
  year: 2014
  end-page: 4381
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  publication-title: Phys. Rev. Lett.
– volume: 2012
  start-page: 2625
  year: 2012
  end-page: 2634
  publication-title: Eur. J. Inorg. Chem.
– start-page: 105
  year: 2016
  end-page: 135
– volume: 356
  start-page: 430
  year: 2017
  publication-title: Science
– volume: 18
  start-page: 637
  year: 2011
  end-page: 648
  publication-title: J. Synchrotron Radiat.
– volume: 38
  start-page: 1846
  year: 2014
  end-page: 1852
  publication-title: New J. Chem.
– volume: 47
  start-page: 1062
  year: 2018
  end-page: 1070
  publication-title: Dalton Trans.
– volume: 167
  start-page: 103
  year: 2005
  end-page: 128
  publication-title: Comput. Phys. Commun.
– volume: 27
  start-page: 4775
  year: 2015
  end-page: 4780
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1419
  year: 2017
  end-page: 1426
  publication-title: ChemSusChem
– volume: 58
  start-page: 3641
  year: 1998
  end-page: 3662
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 11859
  year: 2016
  end-page: 11869
  publication-title: J. Mater. Chem. A
– volume: 114
  start-page: 10024
  year: 1992
  end-page: 10035
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 154104
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 12889
  year: 2017
  end-page: 12898
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 1703
  year: 1996
  end-page: 1710
  publication-title: Phys. Rev. B
– volume: 115
  start-page: 12205
  year: 2015
  end-page: 12250
  publication-title: Chem. Rev.
– volume: 43
  start-page: 5594
  year: 2014
  end-page: 5617
  publication-title: Chem. Soc. Rev.
– volume: 54 127
  start-page: 3664 3735
  year: 2015 2015
  end-page: 3668
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 24073
  year: 2014
  end-page: 24082
  publication-title: RSC Adv.
– volume: 706–709
  start-page: 1707
  year: 2012
  end-page: 1712
  publication-title: Mater. Sci. Forum
– volume: 127
  start-page: 114105
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 24
  start-page: 806
  year: 2012
  end-page: 810
  publication-title: Adv. Mater.
– volume: 43
  start-page: 6097
  year: 2014
  end-page: 6115
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 15
  year: 2014
  end-page: 25
  publication-title: WIREs Comput. Mol. Sci.
SSID ssj0003036
Score 2.4652755
Snippet The porous metal‐organic framework (MOF) MIL‐160 [Al(OH)(O2C‐C4H2O‐CO2)] was investigated by means of high‐resolution powder X‐ray diffraction experiments...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 3626
SubjectTerms Adsorption
Aluminium MOFs
Aluminum
Dehydration
Density functional calculations
Diffraction
Flexibility
Heat treatment
Inorganic chemistry
Lattice parameters
Mathematical analysis
Metal-organic frameworks
NMR
Nuclear magnetic resonance
Phase transitions
Rietveld method
Synchrotron powder diffraction
Synchrotron radiation
Water chemistry
Water sorption
X-ray diffraction
Title Rietveld Refinement of MIL‐160 and Its Structural Flexibility Upon H2O and N2 Adsorption
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201800323
https://www.proquest.com/docview/2097440876
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003036
  issn: 1434-1948
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA-6Cfrif3E6JQ--ljXXtE0fx9zYZE6ZDoYvJW1SmEg71jHwzY_gZ_STmKRdda_6UEghTcpxd_ndkfsdQjfCFZIQQS2fU9eiMXOtKDY3AVhsChe9pGg24Y9GbDoNHn9V8Rf8EFXCTVuG8dfawHmUt35IQ-XrTFMQEoV4HHC2UR2U8tIaqt-Oe5Nh5Y21izYVRg61VMDO1sSNNrQ2V9iAmL-Bqjlpegf__8dDtF-iTNwu1OIIbcn0GO121s3dTtDLeCaXK_km8FgmahudI8RZgu8Hw6-PT-LZmKcCD5Y5fjIEs5qcA_c0eaa5TPuOJ_MsxX14MPNGgNsizxbG_ZyiSa_73OlbZZsFa65iIceSEERB4iWOoCq24OD4wqcRuJwwFsmIEwCbA09swT2RRGroQxzYEiBgnp5_hmpplspzhN3A4DmmYCdQoau_1RMLIghXxx5xGqi5lnFY2koegh1olkLllhsIjDTDecG0ERacyhBqOYaVHMPu3aBTvV385aNLtKfHRXK4iWpKlPIK7cSr5SxfXJc69A3GH8XF
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FfTiW6xW3YPX0OzkfSy1pdW2Sm2heAmb7AYqkpS2FLz5E_yN_hJ3N2m1V_EQSMLmwTAz-80w8w3ALXe4oJTbhsdsx7Bj3zGiWFcC-LFuXHSTfNiE1-_743HwVFQTql6YnB9inXBTlqH9tTJwlZCu_bCGiteJ4iCkEvJYaG1D2Za65JSgfDdojbprd6x8tG4xsmxDRuz-irnRxNrmGzYw5m-kqrea1sE__OQh7Bc4k9RzxTiCLZEew25jNd7tBF4GE7FYijdOBiKR31FZQpIlpNfpfn18UtckLOWks5iTZ00xq-g5SEvRZ-py2ncymmYpaeOjXtdHUufzbKYd0CmMWs1ho20UgxaMqYyGLENgEAWJm1jcltEFQ8vjnh2hw6jvRyJiFNFkyBKTM5cnkTz1MA5MgRj4rlp_BqU0S8U5ECfQiM6XwBNtrvq_5RFzyimTGx-1KlBdCTksrGUeohkonkLpmCuAWpzhNOfaCHNWZQyVHMO1HMPmfaexvrr4y0M3sNse9rpht9N_uIQ9dT9PFVehJMUqrmAnXi4m89l1oVDfuhLJtQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF60FfXiv1itugevodnJ_7G0DY3WWKqF4iVsshuoSBqaUvDmI_iMPom7m7TqVTwEkrC7CcPO7DfDzDcI3TCLcUKYqTnUtDQzcS0tTlQmgJuowkU7LZtNOGHoTibesMomlLUwJT_EOuAmNUPZa6ngPGdp65s1lL9MJQchEZDHAGMT1U3Ls4Vu1rsjfzxYm2Npo1WJkWFqwmN3V8yNOrR-r_ALY_5Equqo8ff_4ScP0F6FM3G73BiHaINnR2ins2rvdoyeR1O-WPJXhkc8Fd-RUUI8S_F9MPh8_yC2jmnGcLAo8KOimJX0HNiX9JkqnfYNj_NZhvvwoMaFgNusmM2VATpBY7_31OlrVaMFLRfekKFx8GIvtVODmcK7oGA4zDFjsChx3ZjHlADoFGiqM2qzNBa3DiSezgE815bjT1Etm2X8DGHLU4jOFcATTCbrv8WVMMIIFQcfMRqouRJyVGlLEYHuSZ5CYZgbCJQ4o7zk2ohKVmWIpByjtRyj3m3QWT-d_2XSNdoedv1oEIR3F2hXvi4jxU1UE1Lll2grWS6mxfyq2k9fklzJMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rietveld+Refinement+of+MIL%E2%80%90160+and+Its+Structural+Flexibility+Upon+H2O+and+N2+Adsorption&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Wahiduzzaman%2C+Mohammad&rft.au=Lenzen%2C+Dirk&rft.au=Maurin%2C+Guillaume&rft.au=Stock%2C+Norbert&rft.date=2018-08-31&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2018&rft.issue=32&rft.spage=3626&rft.epage=3632&rft_id=info:doi/10.1002%2Fejic.201800323&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon