Strassen’s 2×2 matrix multiplication algorithm: a conceptual perspective

The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2 × 2 matrices with only seven multiplications involve some basis-dependent calculations such as explicitly multiplying specific 2 × 2 matrices, ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche Jg. 65; H. 2; S. 241 - 248
Hauptverfasser: Ikenmeyer, Christian, Lysikov, Vladimir
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Milan Springer Milan 01.11.2019
Springer Nature B.V
Schlagworte:
ISSN:0430-3202, 1827-1510
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2 × 2 matrices with only seven multiplications involve some basis-dependent calculations such as explicitly multiplying specific 2 × 2 matrices, expanding expressions to cancel terms with opposing signs, or expanding tensors over the standard basis, sometimes involving clever simplifications using the sparsity of tensor summands. This makes the proof nontrivial to memorize and many presentations of the proof avoid showing all the details and leave a significant amount of verifications to the reader. In this note we give a short, self-contained, basis-independent proof of the existence of Strassen’s algorithm that avoids these types of calculations. We achieve this by focusing on symmetries and algebraic properties. Our proof can be seen as a coordinate-free version of the construction of Clausen from 1988, combined with recent work on the geometry of Strassen’s algorithm by Chiantini, Ikenmeyer, Landsberg, and Ottaviani from 2016.
AbstractList The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2 × 2 matrices with only seven multiplications involve some basis-dependent calculations such as explicitly multiplying specific 2 × 2 matrices, expanding expressions to cancel terms with opposing signs, or expanding tensors over the standard basis, sometimes involving clever simplifications using the sparsity of tensor summands. This makes the proof nontrivial to memorize and many presentations of the proof avoid showing all the details and leave a significant amount of verifications to the reader. In this note we give a short, self-contained, basis-independent proof of the existence of Strassen’s algorithm that avoids these types of calculations. We achieve this by focusing on symmetries and algebraic properties. Our proof can be seen as a coordinate-free version of the construction of Clausen from 1988, combined with recent work on the geometry of Strassen’s algorithm by Chiantini, Ikenmeyer, Landsberg, and Ottaviani from 2016.
The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2×2 matrices with only seven multiplications involve some basis-dependent calculations such as explicitly multiplying specific 2×2 matrices, expanding expressions to cancel terms with opposing signs, or expanding tensors over the standard basis, sometimes involving clever simplifications using the sparsity of tensor summands. This makes the proof nontrivial to memorize and many presentations of the proof avoid showing all the details and leave a significant amount of verifications to the reader. In this note we give a short, self-contained, basis-independent proof of the existence of Strassen’s algorithm that avoids these types of calculations. We achieve this by focusing on symmetries and algebraic properties. Our proof can be seen as a coordinate-free version of the construction of Clausen from 1988, combined with recent work on the geometry of Strassen’s algorithm by Chiantini, Ikenmeyer, Landsberg, and Ottaviani from 2016.
Author Lysikov, Vladimir
Ikenmeyer, Christian
Author_xml – sequence: 1
  givenname: Christian
  surname: Ikenmeyer
  fullname: Ikenmeyer, Christian
  email: cikenmey@mpi-sws.org
  organization: Max Planck Institute for Software Systems
– sequence: 2
  givenname: Vladimir
  surname: Lysikov
  fullname: Lysikov, Vladimir
  organization: Department of Computer Science, Saarland University, Saarland Informatics Campus
BookMark eNpF0EFKAzEUxvEgFWyrF3AVcB19L5lkZtxJ0SoWXKjrkGYyNWU6MyYZcektxPN4E09itYKrt_nzPvhNyKjtWkfIMcIpAuRnEVEqyQBLBiCwYLhHxljwnKFEGJExZAKY4MAPyCTGNYDMMizH5PY-BROja7_ePiLln--cbkwK_pVuhib5vvHWJN-11DSrLvj0tDmnhtquta5Pg2lo70LsnU3-xR2S_do00R393Sl5vLp8mF2zxd38ZnaxYD1mHFntKuSizGTBMa-UgNIZWTiV14XharmU1lVSYuUEiCw3IIFLVVUWy1paBZWYkpPd3z50z4OLSa-7IbTbSc0FIiiQqLaV2FWxD75dufBfIegfNb1T01s1_aumUXwDzz5itw
Cites_doi 10.1007/978-3-662-03338-8
10.1109/IPDPS.2017.56
10.1080/10586458.2017.1403981
10.1016/0041-5553(75)90149-4
10.1016/0020-0190(86)90033-5
10.4086/toc.gs.2013.005
10.1515/dma.1997.7.1.89
10.1145/2608628.2608664
10.1016/0024-3795(85)90080-1
10.1007/978-1-4684-2001-2_4
10.1007/BF01436378
10.1016/0304-3975(78)90045-2
10.1016/0024-3795(75)90071-3
10.1016/j.jpaa.2018.10.014
10.1070/SM8833
10.1007/BF02165411
10.1016/0020-0190(78)90018-2
ContentType Journal Article
Copyright The Author(s) 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright Springer Nature B.V. 2019
DBID C6C
DOI 10.1007/s11565-019-00318-1
DatabaseName Springer Nature OA Free Journals
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1827-1510
EndPage 248
ExternalDocumentID 10_1007_s11565_019_00318_1
GrantInformation_xml – fundername: Max Planck Institute for Software Systems
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~A9
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
ID FETCH-LOGICAL-p1421-fed1239458217d6309ea58e67f8a26bb5ced551de30347a050256ddc19f5c60d3
IEDL.DBID RSV
ISSN 0430-3202
IngestDate Thu Sep 25 01:05:58 EDT 2025
Fri Feb 21 02:32:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Coordinate-free
Elementary
Matrix multiplication
68W30 Symbolic computation and algebraic computation
Strassen’s algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1421-fed1239458217d6309ea58e67f8a26bb5ced551de30347a050256ddc19f5c60d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11565-019-00318-1
PQID 2311060516
PQPubID 2043981
PageCount 8
ParticipantIDs proquest_journals_2311060516
springer_journals_10_1007_s11565_019_00318_1
PublicationCentury 2000
PublicationDate 20191100
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191100
PublicationDecade 2010
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Heidelberg
PublicationSubtitle SEZIONE VII - SCIENZE MATEMATICHE
PublicationTitle Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche
PublicationTitleAbbrev Ann Univ Ferrara
PublicationYear 2019
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Lafon (CR20) 1975; 10
Gates, Kreinovich (CR16) 2001; 73
Fiduccia (CR14) 1972
Strassen (CR28) 1969; 13
CR18
CR17
Yuval (CR29) 1978; 7
Clausen (CR11) 1988
CR13
Ballard, Ikenmeyer, Landsberg, Ryder (CR2) 2019; 223
Chatelin (CR9) 1986; 22
Alekseyev (CR1) 1996; 7
Bürgisser, Clausen, Shokrollahi (CR7) 1997
de Groote (CR12) 1978; 7
Büchi, Clausen (CR6) 1985; 69
CR4
Gastinel (CR15) 1971; 17
CR5
CR8
CR27
Chiantini, Ikenmeyer, Landsberg, Ottaviani (CR10) 2017
Le Gall (CR21) 2014; 2014
CR26
CR24
CR23
Pan (CR25) 2017; 208
Bläser (CR3) 2013; 5
Huang, Rice, Matthews, van de Geijn (CR19) 2017; 2017
Makarov (CR22) 1975; 15
References_xml – year: 1997
  ident: CR7
  publication-title: Algebraic Complexity Theory, volume 315 of Grundlehren der mathematischen Wissenschaften
  doi: 10.1007/978-3-662-03338-8
– volume: 2017
  start-page: 656
  year: 2017
  end-page: 667
  ident: CR19
  article-title: Generating families of practical fast matrix multiplication algorithms
  publication-title: Proc. IPDPS
  doi: 10.1109/IPDPS.2017.56
– ident: CR18
– ident: CR4
– year: 1988
  ident: CR11
  publication-title: Beiträge zum Entwurf schneller Spektraltransformationen
– year: 2017
  ident: CR10
  article-title: The geometry of rank decompositions of matrix multiplication I: matrices
  publication-title: Exp Math
  doi: 10.1080/10586458.2017.1403981
– volume: 15
  start-page: 218
  issue: 1
  year: 1975
  end-page: 223
  ident: CR22
  article-title: The connection between two multiplication algorithms
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(75)90149-4
– volume: 22
  start-page: 1
  issue: 1
  year: 1986
  end-page: 5
  ident: CR9
  article-title: On transformations of algorithms to multiply matrices
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(86)90033-5
– volume: 5
  start-page: 1
  year: 2013
  end-page: 60
  ident: CR3
  article-title: Fast matrix multiplication
  publication-title: Theory Comput. Grad. Surv.
  doi: 10.4086/toc.gs.2013.005
– volume: 73
  start-page: 142
  year: 2001
  end-page: 145
  ident: CR16
  article-title: Strassen’s algorithm made (somewhat) more natural: a pedagogical remark
  publication-title: Bull. EATCS
– volume: 7
  start-page: 89
  issue: 1
  year: 1996
  end-page: 102
  ident: CR1
  article-title: Maximal extensions with simple multiplication for the algebra of matrices of the second order
  publication-title: Discrete Math. Appl.
  doi: 10.1515/dma.1997.7.1.89
– volume: 2014
  start-page: 296
  year: 2014
  end-page: 303
  ident: CR21
  article-title: Powers of tensors and fast matrix multiplication
  publication-title: Proc. ISSAC
  doi: 10.1145/2608628.2608664
– ident: CR8
– ident: CR27
– ident: CR23
– volume: 69
  start-page: 249
  year: 1985
  end-page: 268
  ident: CR6
  article-title: On a class of primary algebras of minimal rank
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(85)90080-1
– start-page: 31
  year: 1972
  end-page: 40
  ident: CR14
  article-title: On Obtaining Upper Bounds on the Complexity of Matrix Multiplication
  publication-title: Complexity of Computer Computations
  doi: 10.1007/978-1-4684-2001-2_4
– volume: 17
  start-page: 222
  issue: 3
  year: 1971
  end-page: 229
  ident: CR15
  article-title: Sur le calcul des produits de matrices
  publication-title: Numer. Math.
  doi: 10.1007/BF01436378
– ident: CR17
– volume: 7
  start-page: 127
  issue: 2
  year: 1978
  end-page: 184
  ident: CR12
  article-title: On varieties of optimal algorithms for the computation of bilinear mappings II: Optimal algorithms for -matrix multiplication
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(78)90045-2
– ident: CR13
– volume: 10
  start-page: 225
  issue: 3
  year: 1975
  end-page: 240
  ident: CR20
  article-title: Optimum computation of bilinear forms
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(75)90071-3
– ident: CR5
– volume: 223
  start-page: 3205
  year: 2019
  end-page: 3224
  ident: CR2
  article-title: The geometry of rank decompositions of matrix multiplication II: matrices
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/j.jpaa.2018.10.014
– volume: 208
  start-page: 1661
  issue: 11
  year: 2017
  end-page: 1704
  ident: CR25
  article-title: Fast matrix multiplication and its algebraic neighbourhood
  publication-title: Sb. Math.
  doi: 10.1070/SM8833
– ident: CR26
– ident: CR24
– volume: 13
  start-page: 354
  issue: 4
  year: 1969
  end-page: 356
  ident: CR28
  article-title: Gaussian elimination is not optimal
  publication-title: Numer. Math.
  doi: 10.1007/BF02165411
– volume: 7
  start-page: 285
  issue: 6
  year: 1978
  end-page: 286
  ident: CR29
  article-title: A simple proof of Strassen’s result
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(78)90018-2
SSID ssj0054419
Score 2.1349902
Snippet The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2 × 2...
The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2×2...
SourceID proquest
springer
SourceType Aggregation Database
Publisher
StartPage 241
SubjectTerms Algebraic Geometry
Algorithms
Analysis
Geometry
History of Mathematical Sciences
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Multiplication
Numerical Analysis
Tensors
Title Strassen’s 2×2 matrix multiplication algorithm: a conceptual perspective
URI https://link.springer.com/article/10.1007/s11565-019-00318-1
https://www.proquest.com/docview/2311060516
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1827-1510
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054419
  issn: 0430-3202
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA6yetCD_7K7rpKDRwNt2qSpNxEXQV0Ef9hbafOjC2532e6KR99CfB7fxCdxkm0tCh4UemsJYTKZ-aaZ7wtCB8ZTIoSHBCzLCGRoSQSjgkA8NjzgIqbGrfRF1OuJfj--KklhRdXtXh1Jukhdk92g1LCNZjFxnkig5llkVm3G1ujXd1X8tZdqOdAbBhBhqO3faf8-xjdg-eMs1KWY7tr_JreOVktIiY_nPrCBFnS-iVYuv_RYiy10bkVoi0LnHy9vBabvrxQPrTb_My4bCss_dzh9vB9NBtOH4RFOsZxTGmcw-LjmZG6j2-7pzckZKa9RIGM_pD4xWvn2AnRLiY0UD7xYp0xoHhmRUp5lTGoFuElpyGZhlHrMwiClpB8bJrmngh3UyEe5biIcmTCQCiBaFJtQyjCLuWERIExldOYJ2UKdyppJuReKBBAk1J2w-XkLHVbWq1_XusnWhAmY0OmVisRv_-3zXbRM7QI4omAHNaaTmd5DS_JpOigm-85HPgGP_biU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SBfXgW2ytmoNHA_vMZr2JWCp9IFilt2U3D1uw29JtxaP_Qvw9_hN_iZN010XBg8LesoQwmcx8k8w3g9CpsgTz4COunyQEPDQnzHcYAXusqEtZ6Ciz0-2g22X9fniTk8KyItu9eJI0lroku0GooRPNQmI0kUDMs-zpNjs6Rr-9L-yvbqplQK_ngoVxdP5O7fc5vgHLH2-hxsU0Nv-3uC20kUNKfLHQgW20JNMdtN75qsea7aKWLkKbZTL9eHnLsPP-6uCRrs3_jPOEwvzmDsePD-PpcDYYneMY8wWlcQ6TT0pO5h66a1z1Lpskb6NAJjbIhygpbN0AXVNiA0FdK5SxzyQNFIsdmiQ-lwJwk5DgzbwgtnwNg4Tgdqh8Ti3h7qNKOk7lAcKB8lwuAKIFofI495KQKj8AhCmUTCzGq6heSDPKz0IWAYKEuBMOP62is0J65XBZN1mLMAIRmnqlLLJrf_v9BK02e5121L7utg7RmqM3w5AG66gym87lEVrhT7NhNj02-vIJQl27eA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF6kiujBf7G16h48ujTZbJKNN1GL0lqKf_QWkv3Rgk1Lk4pH30J8Ht_EJ3F3mxgVPIiQW8ISZicz32Tn-waAfWlxStSFHDeOkcrQDFEXU6TisfQcjwZYmp1u-50O7fWC7hcWv-l2L44kp5wGrdKUZI0Rl42S-KbKDt10FiDjlUjVP7NEVTK6qevy6raIxXrAlgHAxFHRButentrva3wDmT_ORU26aS7__0VXwFIONeHR1DdWwYxI1sDixadOa7oOWlqcNk1F8v78mkL89oLhQGv2P8G80TD_owejh7vhuJ_dDw5hBNmU6jhRi49KruYGuGmeXh-foXy8AhrZBNtICm7rweiaKutzz7ECEblUeL6kEfbi2GWCKzzFhcpyxI8sV8MjzpkdSJd5Fnc2QSUZJmILQF8Sh3EF3fxAEsZIHHjS9RXy5FLEFmVVUC8sG-bfSBoqZKnqURUUvCo4KCxZ3i71lLUJQ2VCo2NKQ7v2t8f3wHz3pBm2zzutbbCA9V4YLmEdVLLxROyAOfaY9dPxrnGdD4pkxFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strassen%E2%80%99s+2+%C3%97+2+matrix+multiplication+algorithm%3A+a+conceptual+perspective&rft.jtitle=Annali+dell%27Universit%C3%A0+di+Ferrara.+Sezione+7.+Scienze+matematiche&rft.au=Ikenmeyer%2C+Christian&rft.au=Lysikov%2C+Vladimir&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0430-3202&rft.eissn=1827-1510&rft.volume=65&rft.issue=2&rft.spage=241&rft.epage=248&rft_id=info:doi/10.1007%2Fs11565-019-00318-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0430-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0430-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0430-3202&client=summon