Strassen’s 2×2 matrix multiplication algorithm: a conceptual perspective
The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2 × 2 matrices with only seven multiplications involve some basis-dependent calculations such as explicitly multiplying specific 2 × 2 matrices, ex...
Gespeichert in:
| Veröffentlicht in: | Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche Jg. 65; H. 2; S. 241 - 248 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Milan
Springer Milan
01.11.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0430-3202, 1827-1510 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two
2
×
2
matrices with only seven multiplications involve some basis-dependent calculations such as explicitly multiplying specific
2
×
2
matrices, expanding expressions to cancel terms with opposing signs, or expanding tensors over the standard basis, sometimes involving clever simplifications using the sparsity of tensor summands. This makes the proof nontrivial to memorize and many presentations of the proof avoid showing all the details and leave a significant amount of verifications to the reader. In this note we give a short, self-contained, basis-independent proof of the existence of Strassen’s algorithm that avoids these types of calculations. We achieve this by focusing on symmetries and algebraic properties. Our proof can be seen as a coordinate-free version of the construction of Clausen from 1988, combined with recent work on the geometry of Strassen’s algorithm by Chiantini, Ikenmeyer, Landsberg, and Ottaviani from 2016. |
|---|---|
| AbstractList | The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two
2
×
2
matrices with only seven multiplications involve some basis-dependent calculations such as explicitly multiplying specific
2
×
2
matrices, expanding expressions to cancel terms with opposing signs, or expanding tensors over the standard basis, sometimes involving clever simplifications using the sparsity of tensor summands. This makes the proof nontrivial to memorize and many presentations of the proof avoid showing all the details and leave a significant amount of verifications to the reader. In this note we give a short, self-contained, basis-independent proof of the existence of Strassen’s algorithm that avoids these types of calculations. We achieve this by focusing on symmetries and algebraic properties. Our proof can be seen as a coordinate-free version of the construction of Clausen from 1988, combined with recent work on the geometry of Strassen’s algorithm by Chiantini, Ikenmeyer, Landsberg, and Ottaviani from 2016. The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2×2 matrices with only seven multiplications involve some basis-dependent calculations such as explicitly multiplying specific 2×2 matrices, expanding expressions to cancel terms with opposing signs, or expanding tensors over the standard basis, sometimes involving clever simplifications using the sparsity of tensor summands. This makes the proof nontrivial to memorize and many presentations of the proof avoid showing all the details and leave a significant amount of verifications to the reader. In this note we give a short, self-contained, basis-independent proof of the existence of Strassen’s algorithm that avoids these types of calculations. We achieve this by focusing on symmetries and algebraic properties. Our proof can be seen as a coordinate-free version of the construction of Clausen from 1988, combined with recent work on the geometry of Strassen’s algorithm by Chiantini, Ikenmeyer, Landsberg, and Ottaviani from 2016. |
| Author | Lysikov, Vladimir Ikenmeyer, Christian |
| Author_xml | – sequence: 1 givenname: Christian surname: Ikenmeyer fullname: Ikenmeyer, Christian email: cikenmey@mpi-sws.org organization: Max Planck Institute for Software Systems – sequence: 2 givenname: Vladimir surname: Lysikov fullname: Lysikov, Vladimir organization: Department of Computer Science, Saarland University, Saarland Informatics Campus |
| BookMark | eNpF0EFKAzEUxvEgFWyrF3AVcB19L5lkZtxJ0SoWXKjrkGYyNWU6MyYZcektxPN4E09itYKrt_nzPvhNyKjtWkfIMcIpAuRnEVEqyQBLBiCwYLhHxljwnKFEGJExZAKY4MAPyCTGNYDMMizH5PY-BROja7_ePiLln--cbkwK_pVuhib5vvHWJN-11DSrLvj0tDmnhtquta5Pg2lo70LsnU3-xR2S_do00R393Sl5vLp8mF2zxd38ZnaxYD1mHFntKuSizGTBMa-UgNIZWTiV14XharmU1lVSYuUEiCw3IIFLVVUWy1paBZWYkpPd3z50z4OLSa-7IbTbSc0FIiiQqLaV2FWxD75dufBfIegfNb1T01s1_aumUXwDzz5itw |
| Cites_doi | 10.1007/978-3-662-03338-8 10.1109/IPDPS.2017.56 10.1080/10586458.2017.1403981 10.1016/0041-5553(75)90149-4 10.1016/0020-0190(86)90033-5 10.4086/toc.gs.2013.005 10.1515/dma.1997.7.1.89 10.1145/2608628.2608664 10.1016/0024-3795(85)90080-1 10.1007/978-1-4684-2001-2_4 10.1007/BF01436378 10.1016/0304-3975(78)90045-2 10.1016/0024-3795(75)90071-3 10.1016/j.jpaa.2018.10.014 10.1070/SM8833 10.1007/BF02165411 10.1016/0020-0190(78)90018-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: The Author(s) 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | C6C |
| DOI | 10.1007/s11565-019-00318-1 |
| DatabaseName | Springer Nature OA Free Journals |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1827-1510 |
| EndPage | 248 |
| ExternalDocumentID | 10_1007_s11565_019_00318_1 |
| GrantInformation_xml | – fundername: Max Planck Institute for Software Systems |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~A9 AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA |
| ID | FETCH-LOGICAL-p1421-fed1239458217d6309ea58e67f8a26bb5ced551de30347a050256ddc19f5c60d3 |
| IEDL.DBID | RSV |
| ISSN | 0430-3202 |
| IngestDate | Thu Sep 25 01:05:58 EDT 2025 Fri Feb 21 02:32:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Coordinate-free Elementary Matrix multiplication 68W30 Symbolic computation and algebraic computation Strassen’s algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p1421-fed1239458217d6309ea58e67f8a26bb5ced551de30347a050256ddc19f5c60d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s11565-019-00318-1 |
| PQID | 2311060516 |
| PQPubID | 2043981 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2311060516 springer_journals_10_1007_s11565_019_00318_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20191100 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 20191100 |
| PublicationDecade | 2010 |
| PublicationPlace | Milan |
| PublicationPlace_xml | – name: Milan – name: Heidelberg |
| PublicationSubtitle | SEZIONE VII - SCIENZE MATEMATICHE |
| PublicationTitle | Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche |
| PublicationTitleAbbrev | Ann Univ Ferrara |
| PublicationYear | 2019 |
| Publisher | Springer Milan Springer Nature B.V |
| Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
| References | Lafon (CR20) 1975; 10 Gates, Kreinovich (CR16) 2001; 73 Fiduccia (CR14) 1972 Strassen (CR28) 1969; 13 CR18 CR17 Yuval (CR29) 1978; 7 Clausen (CR11) 1988 CR13 Ballard, Ikenmeyer, Landsberg, Ryder (CR2) 2019; 223 Chatelin (CR9) 1986; 22 Alekseyev (CR1) 1996; 7 Bürgisser, Clausen, Shokrollahi (CR7) 1997 de Groote (CR12) 1978; 7 Büchi, Clausen (CR6) 1985; 69 CR4 Gastinel (CR15) 1971; 17 CR5 CR8 CR27 Chiantini, Ikenmeyer, Landsberg, Ottaviani (CR10) 2017 Le Gall (CR21) 2014; 2014 CR26 CR24 CR23 Pan (CR25) 2017; 208 Bläser (CR3) 2013; 5 Huang, Rice, Matthews, van de Geijn (CR19) 2017; 2017 Makarov (CR22) 1975; 15 |
| References_xml | – year: 1997 ident: CR7 publication-title: Algebraic Complexity Theory, volume 315 of Grundlehren der mathematischen Wissenschaften doi: 10.1007/978-3-662-03338-8 – volume: 2017 start-page: 656 year: 2017 end-page: 667 ident: CR19 article-title: Generating families of practical fast matrix multiplication algorithms publication-title: Proc. IPDPS doi: 10.1109/IPDPS.2017.56 – ident: CR18 – ident: CR4 – year: 1988 ident: CR11 publication-title: Beiträge zum Entwurf schneller Spektraltransformationen – year: 2017 ident: CR10 article-title: The geometry of rank decompositions of matrix multiplication I: matrices publication-title: Exp Math doi: 10.1080/10586458.2017.1403981 – volume: 15 start-page: 218 issue: 1 year: 1975 end-page: 223 ident: CR22 article-title: The connection between two multiplication algorithms publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(75)90149-4 – volume: 22 start-page: 1 issue: 1 year: 1986 end-page: 5 ident: CR9 article-title: On transformations of algorithms to multiply matrices publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(86)90033-5 – volume: 5 start-page: 1 year: 2013 end-page: 60 ident: CR3 article-title: Fast matrix multiplication publication-title: Theory Comput. Grad. Surv. doi: 10.4086/toc.gs.2013.005 – volume: 73 start-page: 142 year: 2001 end-page: 145 ident: CR16 article-title: Strassen’s algorithm made (somewhat) more natural: a pedagogical remark publication-title: Bull. EATCS – volume: 7 start-page: 89 issue: 1 year: 1996 end-page: 102 ident: CR1 article-title: Maximal extensions with simple multiplication for the algebra of matrices of the second order publication-title: Discrete Math. Appl. doi: 10.1515/dma.1997.7.1.89 – volume: 2014 start-page: 296 year: 2014 end-page: 303 ident: CR21 article-title: Powers of tensors and fast matrix multiplication publication-title: Proc. ISSAC doi: 10.1145/2608628.2608664 – ident: CR8 – ident: CR27 – ident: CR23 – volume: 69 start-page: 249 year: 1985 end-page: 268 ident: CR6 article-title: On a class of primary algebras of minimal rank publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(85)90080-1 – start-page: 31 year: 1972 end-page: 40 ident: CR14 article-title: On Obtaining Upper Bounds on the Complexity of Matrix Multiplication publication-title: Complexity of Computer Computations doi: 10.1007/978-1-4684-2001-2_4 – volume: 17 start-page: 222 issue: 3 year: 1971 end-page: 229 ident: CR15 article-title: Sur le calcul des produits de matrices publication-title: Numer. Math. doi: 10.1007/BF01436378 – ident: CR17 – volume: 7 start-page: 127 issue: 2 year: 1978 end-page: 184 ident: CR12 article-title: On varieties of optimal algorithms for the computation of bilinear mappings II: Optimal algorithms for -matrix multiplication publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(78)90045-2 – ident: CR13 – volume: 10 start-page: 225 issue: 3 year: 1975 end-page: 240 ident: CR20 article-title: Optimum computation of bilinear forms publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(75)90071-3 – ident: CR5 – volume: 223 start-page: 3205 year: 2019 end-page: 3224 ident: CR2 article-title: The geometry of rank decompositions of matrix multiplication II: matrices publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2018.10.014 – volume: 208 start-page: 1661 issue: 11 year: 2017 end-page: 1704 ident: CR25 article-title: Fast matrix multiplication and its algebraic neighbourhood publication-title: Sb. Math. doi: 10.1070/SM8833 – ident: CR26 – ident: CR24 – volume: 13 start-page: 354 issue: 4 year: 1969 end-page: 356 ident: CR28 article-title: Gaussian elimination is not optimal publication-title: Numer. Math. doi: 10.1007/BF02165411 – volume: 7 start-page: 285 issue: 6 year: 1978 end-page: 286 ident: CR29 article-title: A simple proof of Strassen’s result publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(78)90018-2 |
| SSID | ssj0054419 |
| Score | 2.1349902 |
| Snippet | The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two
2
×
2... The main purpose of this paper is pedagogical. Despite its importance, all proofs of the correctness of Strassen’s famous 1969 algorithm to multiply two 2×2... |
| SourceID | proquest springer |
| SourceType | Aggregation Database Publisher |
| StartPage | 241 |
| SubjectTerms | Algebraic Geometry Algorithms Analysis Geometry History of Mathematical Sciences Mathematical analysis Mathematics Mathematics and Statistics Matrices (mathematics) Multiplication Numerical Analysis Tensors |
| Title | Strassen’s 2×2 matrix multiplication algorithm: a conceptual perspective |
| URI | https://link.springer.com/article/10.1007/s11565-019-00318-1 https://www.proquest.com/docview/2311060516 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1827-1510 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054419 issn: 0430-3202 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA6yetCD_7K7rpKDRwNt2qSpNxEXQV0Ef9hbafOjC2532e6KR99CfB7fxCdxkm0tCh4UemsJYTKZ-aaZ7wtCB8ZTIoSHBCzLCGRoSQSjgkA8NjzgIqbGrfRF1OuJfj--KklhRdXtXh1Jukhdk92g1LCNZjFxnkig5llkVm3G1ujXd1X8tZdqOdAbBhBhqO3faf8-xjdg-eMs1KWY7tr_JreOVktIiY_nPrCBFnS-iVYuv_RYiy10bkVoi0LnHy9vBabvrxQPrTb_My4bCss_dzh9vB9NBtOH4RFOsZxTGmcw-LjmZG6j2-7pzckZKa9RIGM_pD4xWvn2AnRLiY0UD7xYp0xoHhmRUp5lTGoFuElpyGZhlHrMwiClpB8bJrmngh3UyEe5biIcmTCQCiBaFJtQyjCLuWERIExldOYJ2UKdyppJuReKBBAk1J2w-XkLHVbWq1_XusnWhAmY0OmVisRv_-3zXbRM7QI4omAHNaaTmd5DS_JpOigm-85HPgGP_biU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SBfXgW2ytmoNHA_vMZr2JWCp9IFilt2U3D1uw29JtxaP_Qvw9_hN_iZN010XBg8LesoQwmcx8k8w3g9CpsgTz4COunyQEPDQnzHcYAXusqEtZ6Ciz0-2g22X9fniTk8KyItu9eJI0lroku0GooRPNQmI0kUDMs-zpNjs6Rr-9L-yvbqplQK_ngoVxdP5O7fc5vgHLH2-hxsU0Nv-3uC20kUNKfLHQgW20JNMdtN75qsea7aKWLkKbZTL9eHnLsPP-6uCRrs3_jPOEwvzmDsePD-PpcDYYneMY8wWlcQ6TT0pO5h66a1z1Lpskb6NAJjbIhygpbN0AXVNiA0FdK5SxzyQNFIsdmiQ-lwJwk5DgzbwgtnwNg4Tgdqh8Ti3h7qNKOk7lAcKB8lwuAKIFofI495KQKj8AhCmUTCzGq6heSDPKz0IWAYKEuBMOP62is0J65XBZN1mLMAIRmnqlLLJrf_v9BK02e5121L7utg7RmqM3w5AG66gym87lEVrhT7NhNj02-vIJQl27eA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF6kiujBf7G16h48ujTZbJKNN1GL0lqKf_QWkv3Rgk1Lk4pH30J8Ht_EJ3F3mxgVPIiQW8ISZicz32Tn-waAfWlxStSFHDeOkcrQDFEXU6TisfQcjwZYmp1u-50O7fWC7hcWv-l2L44kp5wGrdKUZI0Rl42S-KbKDt10FiDjlUjVP7NEVTK6qevy6raIxXrAlgHAxFHRButentrva3wDmT_ORU26aS7__0VXwFIONeHR1DdWwYxI1sDixadOa7oOWlqcNk1F8v78mkL89oLhQGv2P8G80TD_owejh7vhuJ_dDw5hBNmU6jhRi49KruYGuGmeXh-foXy8AhrZBNtICm7rweiaKutzz7ECEblUeL6kEfbi2GWCKzzFhcpyxI8sV8MjzpkdSJd5Fnc2QSUZJmILQF8Sh3EF3fxAEsZIHHjS9RXy5FLEFmVVUC8sG-bfSBoqZKnqURUUvCo4KCxZ3i71lLUJQ2VCo2NKQ7v2t8f3wHz3pBm2zzutbbCA9V4YLmEdVLLxROyAOfaY9dPxrnGdD4pkxFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strassen%E2%80%99s+2+%C3%97+2+matrix+multiplication+algorithm%3A+a+conceptual+perspective&rft.jtitle=Annali+dell%27Universit%C3%A0+di+Ferrara.+Sezione+7.+Scienze+matematiche&rft.au=Ikenmeyer%2C+Christian&rft.au=Lysikov%2C+Vladimir&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0430-3202&rft.eissn=1827-1510&rft.volume=65&rft.issue=2&rft.spage=241&rft.epage=248&rft_id=info:doi/10.1007%2Fs11565-019-00318-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0430-3202&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0430-3202&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0430-3202&client=summon |