A trust region algorithm with a worst-case iteration complexity of O(ϵ-3/2) for nonconvex optimization
We propose a trust region algorithm for solving nonconvex smooth optimization problems. For any ϵ ¯ ∈ ( 0 , ∞ ) , the algorithm requires at most O ( ϵ - 3 / 2 ) iterations, function evaluations, and derivative evaluations to drive the norm of the gradient of the objective function below any ϵ ∈ ( 0...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming Jg. 162; H. 1-2; S. 1 - 32 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2017
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose a trust region algorithm for solving nonconvex smooth optimization problems. For any
ϵ
¯
∈
(
0
,
∞
)
, the algorithm requires at most
O
(
ϵ
-
3
/
2
)
iterations, function evaluations, and derivative evaluations to drive the norm of the gradient of the objective function below any
ϵ
∈
(
0
,
ϵ
¯
]
. This improves upon the
O
(
ϵ
-
2
)
bound known to hold for some other trust region algorithms and matches the
O
(
ϵ
-
3
/
2
)
bound for the recently proposed Adaptive Regularisation framework using Cubics, also known as the
arc
algorithm. Our algorithm, entitled
trace
, follows a trust region framework, but employs modified step acceptance criteria and a novel trust region update mechanism that allow the algorithm to achieve such a worst-case global complexity bound. Importantly, we prove that our algorithm also attains global and fast local convergence guarantees under similar assumptions as for other trust region algorithms. We also prove a worst-case upper bound on the number of iterations, function evaluations, and derivative evaluations that the algorithm requires to obtain an approximate second-order stationary point. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-016-1026-2 |