An improved fuzzy C-Means algorithm for power load characteristics classification

A simulated annealing and genetic algorithm oriented Fuzzy C-Means (SAGA-FCM) algorithm is used for load classification to improve the accuracy and validity. The traditional Fuzzy C-Means (FCM) algorithm is sensitive to its initial cluster centers, and it is easy to fall into the local optimum. Whil...

Full description

Saved in:
Bibliographic Details
Published in:Dianli Xitong Baohu yu Kongzhi Vol. 40; no. 22; pp. 58 - 63
Main Authors: Zhou, Kai-Le, Yang, Shan-Lin
Format: Journal Article
Language:Chinese
Published: 16.11.2012
Subjects:
ISSN:1674-3415
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A simulated annealing and genetic algorithm oriented Fuzzy C-Means (SAGA-FCM) algorithm is used for load classification to improve the accuracy and validity. The traditional Fuzzy C-Means (FCM) algorithm is sensitive to its initial cluster centers, and it is easy to fall into the local optimum. While SAGA-FCM algorithm integrates the strong local search ability of simulated annealing algorithm and the strong global search ability of genetic algorithm to overcome the drawbacks of traditional FCM algorithm. Meanwhile, the hierarchical clustering method, K-Means algorithm and traditional FCM algorithm are also used for power load classification. The comparative analysis from the experimental results shows that SAGA-FCM algorithm is more effective and superior than the other three algorithms.
AbstractList A simulated annealing and genetic algorithm oriented Fuzzy C-Means (SAGA-FCM) algorithm is used for load classification to improve the accuracy and validity. The traditional Fuzzy C-Means (FCM) algorithm is sensitive to its initial cluster centers, and it is easy to fall into the local optimum. While SAGA-FCM algorithm integrates the strong local search ability of simulated annealing algorithm and the strong global search ability of genetic algorithm to overcome the drawbacks of traditional FCM algorithm. Meanwhile, the hierarchical clustering method, K-Means algorithm and traditional FCM algorithm are also used for power load classification. The comparative analysis from the experimental results shows that SAGA-FCM algorithm is more effective and superior than the other three algorithms.
Author Yang, Shan-Lin
Zhou, Kai-Le
Author_xml – sequence: 1
  givenname: Kai-Le
  surname: Zhou
  fullname: Zhou, Kai-Le
– sequence: 2
  givenname: Shan-Lin
  surname: Yang
  fullname: Yang, Shan-Lin
BookMark eNqFjs1KxDAYRbMYwXGcd8jSTSFJ89flUPyDERF0PXxNvziBNKlNR3Ge3oLu3dy7ORzOFVmlnHBF1lwbWdWSq0uyLSV0jNVcKW2bNXnZJRqGccqf2FN_Op-_aVs9IaRCIb7nKczHgfo80TF_4URjhp66I0zgZpxCmYMr1EVYrD44mENO1-TCQyy4_fsNebu7fW0fqv3z_WO721cjr_VcaaU66xuPznWg0fQguPdamE5bZMYuw6WCXlqDHkD0jZDGd9J3wguLrt6Qm1_vEv9xwjIfhlAcxggJ86kcuGGcSaWE_R9dmKWHWVX_AGDwXrM
ContentType Journal Article
DBID 7SP
7TB
8FD
FR3
KR7
L7M
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
EndPage 63
GroupedDBID -03
7SP
7TB
8FD
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
FR3
GROUPED_DOAJ
KR7
L7M
ID FETCH-LOGICAL-p136t-655b8f9feccba6e7da21ff627b68e0788e0145ad487efaa2d9247fb4fb2f28ec3
ISSN 1674-3415
IngestDate Fri Jul 11 15:48:01 EDT 2025
Fri Jul 11 14:46:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p136t-655b8f9feccba6e7da21ff627b68e0788e0145ad487efaa2d9247fb4fb2f28ec3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1283655085
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1701045528
proquest_miscellaneous_1283655085
PublicationCentury 2000
PublicationDate 20121116
PublicationDateYYYYMMDD 2012-11-16
PublicationDate_xml – month: 11
  year: 2012
  text: 20121116
  day: 16
PublicationDecade 2010
PublicationTitle Dianli Xitong Baohu yu Kongzhi
PublicationYear 2012
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.127063
Snippet A simulated annealing and genetic algorithm oriented Fuzzy C-Means (SAGA-FCM) algorithm is used for load classification to improve the accuracy and validity....
SourceID proquest
SourceType Aggregation Database
StartPage 58
SubjectTerms Algorithms
Classification
Fuzzy
Fuzzy logic
Fuzzy set theory
Genetic algorithms
Searching
Simulated annealing
Title An improved fuzzy C-Means algorithm for power load characteristics classification
URI https://www.proquest.com/docview/1283655085
https://www.proquest.com/docview/1701045528
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pa9swFMfFWnbYZWxsY79RYexiBLYsyfYx61oG9bINUshOQbKl2pDJWRKXLn99n2zFSTYY3WEXERtj7Hzkp--T9N5D6J2USpisDIkpNDgoVEmSxcaQTHGmJU9CWXSBwnkyHqfTafbV18tbdeUEEmvTm5ts8V9RwzmA7UJn_wH3cFM4Ab8BOrSAHdo7gR9ZF_q4bK5BSpp2s4FvnnzWMCIFcn7VLOt19aPbW7hw9dGCeSNLF_17kLW5cJLa7SHaYfP69SP0pnkdTMEO2Kvgg2yqNvjVBhdwtKnq3Sx00_ZbNWqSDz3n-3ZqupKW5D7jt59wiKiLvOvjIb2NFAkjMPjxfSPa51zynaWPNPYmsc_M7gdXb8wO0l6Pv8zOL_N8NjmbTt4vfhJXEcytnPvyKEfoKA7ZnrPshYUL2d2zTC6T2nAMolWIbOdoxaC79vP-8yhOGPfrx27MpplLdef2uw5v98fg3CmOySP00LsKeNQjfozubaon6NvI4i1e3OHFHi8e8GLAizu82OHFv-HFh3ifosvzs8npJ-LLYpBFFIs1EZyr1GQGPj4lhU5KSSNjBE2USDUoPmgixmUJrqg2UtISXOzEKGYUNTTVRfwMHdvG6ucIMx2XoSsbJTljmussLHhUgAeaRpFQSr1AJ9v_YAZmx60lSaubdjUDWRPDg4Bg_8s1iXP2Oafpyztc8wo92PW21-h4vWz1G3S_uF7Xq-XbDv8tw-BchA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+fuzzy+C-Means+algorithm+for+power+load+characteristics+classification&rft.jtitle=Dianli+Xitong+Baohu+yu+Kongzhi&rft.au=Zhou%2C+Kai-Le&rft.au=Yang%2C+Shan-Lin&rft.date=2012-11-16&rft.issn=1674-3415&rft.volume=40&rft.issue=22&rft.spage=58&rft.epage=63&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-3415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-3415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-3415&client=summon