An improved fuzzy C-Means algorithm for power load characteristics classification
A simulated annealing and genetic algorithm oriented Fuzzy C-Means (SAGA-FCM) algorithm is used for load classification to improve the accuracy and validity. The traditional Fuzzy C-Means (FCM) algorithm is sensitive to its initial cluster centers, and it is easy to fall into the local optimum. Whil...
Saved in:
| Published in: | Dianli Xitong Baohu yu Kongzhi Vol. 40; no. 22; pp. 58 - 63 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | Chinese |
| Published: |
16.11.2012
|
| Subjects: | |
| ISSN: | 1674-3415 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A simulated annealing and genetic algorithm oriented Fuzzy C-Means (SAGA-FCM) algorithm is used for load classification to improve the accuracy and validity. The traditional Fuzzy C-Means (FCM) algorithm is sensitive to its initial cluster centers, and it is easy to fall into the local optimum. While SAGA-FCM algorithm integrates the strong local search ability of simulated annealing algorithm and the strong global search ability of genetic algorithm to overcome the drawbacks of traditional FCM algorithm. Meanwhile, the hierarchical clustering method, K-Means algorithm and traditional FCM algorithm are also used for power load classification. The comparative analysis from the experimental results shows that SAGA-FCM algorithm is more effective and superior than the other three algorithms. |
|---|---|
| AbstractList | A simulated annealing and genetic algorithm oriented Fuzzy C-Means (SAGA-FCM) algorithm is used for load classification to improve the accuracy and validity. The traditional Fuzzy C-Means (FCM) algorithm is sensitive to its initial cluster centers, and it is easy to fall into the local optimum. While SAGA-FCM algorithm integrates the strong local search ability of simulated annealing algorithm and the strong global search ability of genetic algorithm to overcome the drawbacks of traditional FCM algorithm. Meanwhile, the hierarchical clustering method, K-Means algorithm and traditional FCM algorithm are also used for power load classification. The comparative analysis from the experimental results shows that SAGA-FCM algorithm is more effective and superior than the other three algorithms. |
| Author | Yang, Shan-Lin Zhou, Kai-Le |
| Author_xml | – sequence: 1 givenname: Kai-Le surname: Zhou fullname: Zhou, Kai-Le – sequence: 2 givenname: Shan-Lin surname: Yang fullname: Yang, Shan-Lin |
| BookMark | eNqFjs1KxDAYRbMYwXGcd8jSTSFJ89flUPyDERF0PXxNvziBNKlNR3Ge3oLu3dy7ORzOFVmlnHBF1lwbWdWSq0uyLSV0jNVcKW2bNXnZJRqGccqf2FN_Op-_aVs9IaRCIb7nKczHgfo80TF_4URjhp66I0zgZpxCmYMr1EVYrD44mENO1-TCQyy4_fsNebu7fW0fqv3z_WO721cjr_VcaaU66xuPznWg0fQguPdamE5bZMYuw6WCXlqDHkD0jZDGd9J3wguLrt6Qm1_vEv9xwjIfhlAcxggJ86kcuGGcSaWE_R9dmKWHWVX_AGDwXrM |
| ContentType | Journal Article |
| DBID | 7SP 7TB 8FD FR3 KR7 L7M |
| DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 63 |
| GroupedDBID | -03 7SP 7TB 8FD ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB FR3 GROUPED_DOAJ KR7 L7M |
| ID | FETCH-LOGICAL-p136t-655b8f9feccba6e7da21ff627b68e0788e0145ad487efaa2d9247fb4fb2f28ec3 |
| ISSN | 1674-3415 |
| IngestDate | Fri Jul 11 15:48:01 EDT 2025 Fri Jul 11 14:46:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p136t-655b8f9feccba6e7da21ff627b68e0788e0145ad487efaa2d9247fb4fb2f28ec3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1283655085 |
| PQPubID | 23500 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1701045528 proquest_miscellaneous_1283655085 |
| PublicationCentury | 2000 |
| PublicationDate | 20121116 |
| PublicationDateYYYYMMDD | 2012-11-16 |
| PublicationDate_xml | – month: 11 year: 2012 text: 20121116 day: 16 |
| PublicationDecade | 2010 |
| PublicationTitle | Dianli Xitong Baohu yu Kongzhi |
| PublicationYear | 2012 |
| SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
| Score | 2.127063 |
| Snippet | A simulated annealing and genetic algorithm oriented Fuzzy C-Means (SAGA-FCM) algorithm is used for load classification to improve the accuracy and validity.... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 58 |
| SubjectTerms | Algorithms Classification Fuzzy Fuzzy logic Fuzzy set theory Genetic algorithms Searching Simulated annealing |
| Title | An improved fuzzy C-Means algorithm for power load characteristics classification |
| URI | https://www.proquest.com/docview/1283655085 https://www.proquest.com/docview/1701045528 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1674-3415 databaseCode: DOA dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0002912115 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pa9swFMfFWnbYZWxsY79RYexiBLYsyfYx61oG9bINUshOQbKl2pDJWRKXLn99n2zFSTYY3WEXERtj7Hzkp--T9N5D6J2USpisDIkpNDgoVEmSxcaQTHGmJU9CWXSBwnkyHqfTafbV18tbdeUEEmvTm5ts8V9RwzmA7UJn_wH3cFM4Ab8BOrSAHdo7gR9ZF_q4bK5BSpp2s4FvnnzWMCIFcn7VLOt19aPbW7hw9dGCeSNLF_17kLW5cJLa7SHaYfP69SP0pnkdTMEO2Kvgg2yqNvjVBhdwtKnq3Sx00_ZbNWqSDz3n-3ZqupKW5D7jt59wiKiLvOvjIb2NFAkjMPjxfSPa51zynaWPNPYmsc_M7gdXb8wO0l6Pv8zOL_N8NjmbTt4vfhJXEcytnPvyKEfoKA7ZnrPshYUL2d2zTC6T2nAMolWIbOdoxaC79vP-8yhOGPfrx27MpplLdef2uw5v98fg3CmOySP00LsKeNQjfozubaon6NvI4i1e3OHFHi8e8GLAizu82OHFv-HFh3ifosvzs8npJ-LLYpBFFIs1EZyr1GQGPj4lhU5KSSNjBE2USDUoPmgixmUJrqg2UtISXOzEKGYUNTTVRfwMHdvG6ucIMx2XoSsbJTljmussLHhUgAeaRpFQSr1AJ9v_YAZmx60lSaubdjUDWRPDg4Bg_8s1iXP2Oafpyztc8wo92PW21-h4vWz1G3S_uF7Xq-XbDv8tw-BchA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+fuzzy+C-Means+algorithm+for+power+load+characteristics+classification&rft.jtitle=Dianli+Xitong+Baohu+yu+Kongzhi&rft.au=Zhou%2C+Kai-Le&rft.au=Yang%2C+Shan-Lin&rft.date=2012-11-16&rft.issn=1674-3415&rft.volume=40&rft.issue=22&rft.spage=58&rft.epage=63&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-3415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-3415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-3415&client=summon |