Analysis of a multigrid preconditioner for Crouzeix-Raviart discretization of elliptic partial differential equation with jumpcoefficients

SUMMARY In this paper, we present a multigrid V-cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix-Raviart discretization of second-order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical linear algebra with applications Ročník 21; číslo 1; s. 24 - 38
Hlavný autor: Zhu, Yunrong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Wiley Subscription Services, Inc 01.01.2014
Predmet:
ISSN:1070-5325, 1099-1506
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract SUMMARY In this paper, we present a multigrid V-cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix-Raviart discretization of second-order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We showed that the convergence rates of the (multiplicative) two-grid and multigrid V-cycle algorithms will deteriorate rapidly because of large jumps in coefficient. However, the preconditioned systems have only a fixed number of small eigenvalues depending on the large jump in coefficient, and the effective condition numbers are independent of the coefficient and bounded logarithmically with respect to the mesh size. As a result, the two-grid or multigrid preconditioned conjugate gradient algorithm converges nearly uniformly. We also comment on some major differences of the convergence theory between the nonconforming case and the standard conforming case. Numerical experiments support the theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList In this paper, we present a multigrid V-cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix-Raviart discretization of second-order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We showed that the convergence rates of the (multiplicative) two-grid and multigrid V-cycle algorithms will deteriorate rapidly because of large jumps in coefficient. However, the preconditioned systems have only a fixed number of small eigenvalues depending on the large jump in coefficient, and the effective condition numbers are independent of the coefficient and bounded logarithmically with respect to the mesh size. As a result, the two-grid or multigrid preconditioned conjugate gradient algorithm converges nearly uniformly. We also comment on some major differences of the convergence theory between the nonconforming case and the standard conforming case. Numerical experiments support the theoretical results. Copyright copyright 2012 John Wiley & Sons, Ltd.
SUMMARY In this paper, we present a multigrid V-cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix-Raviart discretization of second-order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We showed that the convergence rates of the (multiplicative) two-grid and multigrid V-cycle algorithms will deteriorate rapidly because of large jumps in coefficient. However, the preconditioned systems have only a fixed number of small eigenvalues depending on the large jump in coefficient, and the effective condition numbers are independent of the coefficient and bounded logarithmically with respect to the mesh size. As a result, the two-grid or multigrid preconditioned conjugate gradient algorithm converges nearly uniformly. We also comment on some major differences of the convergence theory between the nonconforming case and the standard conforming case. Numerical experiments support the theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.
Author Zhu, Yunrong
Author_xml – sequence: 1
  givenname: Yunrong
  surname: Zhu
  fullname: Zhu, Yunrong
BookMark eNpdkM1qwzAMgM3YYG032CMYdtklnWzXiXMsZX9QGIzei5PYm0oap7aznz7CnnruutNAIAl9fEgak9POdYaQKwZTBsBvu1ZPmZL5CRkxKMuMSchPD3UBmRRcnpNxCBsAyGUpRuR73un2K2CgzlJNt0Mb8dVjQ3tvatc1GDH5PbXO04V3w97gZ_ai31H7SBsMtTcR9_pAHQymbbGPWNM-zVG3CbHWeNP9NmY3HMkPjG90M2z72hlrscYEhAtyZnUbzOVfnpDV_d1q8Zgtnx-eFvNl1jPBYqaNmvGyAtk0FdeFEVBLORO6qWoQilteSZVXktmSp6iUqsCUTHFhLS9yEBNyc9T23u0GE-J6m85Ii-vOuCGsWT7jvJBFck7I9T904wafHnagcmBKgBDiB2l6dpg
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID 7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nla.1856
DatabaseName Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1099-1506
EndPage 38
ExternalDocumentID 3612286041
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
7SC
7TB
8-0
8-1
8-3
8-4
8-5
8FD
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FR3
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
JQ2
KQQ
KR7
L7M
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
L~C
L~D
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
O8X
ID FETCH-LOGICAL-p131t-ae8429b05ddb2a7e30c5543adbc0382f2b586b51f92f92b88b0e91823ff27603
ISSN 1070-5325
IngestDate Sun Nov 23 09:44:25 EST 2025
Fri Jul 25 12:10:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p131t-ae8429b05ddb2a7e30c5543adbc0382f2b586b51f92f92b88b0e91823ff27603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1660183033
PQPubID 2034341
PageCount 15
ParticipantIDs proquest_miscellaneous_1642275754
proquest_journals_1660183033
PublicationCentury 2000
PublicationDate 20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 20140101
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Numerical linear algebra with applications
PublicationYear 2014
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
SSID ssj0006593
Score 2.0057883
Snippet SUMMARY In this paper, we present a multigrid V-cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix-Raviart...
In this paper, we present a multigrid V-cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix-Raviart discretization...
SourceID proquest
SourceType Aggregation Database
StartPage 24
SubjectTerms Algorithms
Convergence
Deterioration
Discretization
Eigenvalues
Linear systems
Mathematical models
Title Analysis of a multigrid preconditioner for Crouzeix-Raviart discretization of elliptic partial differential equation with jumpcoefficients
URI https://www.proquest.com/docview/1660183033
https://www.proquest.com/docview/1642275754
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006593
  issn: 1070-5325
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM8ID7F2EBGQrxMBseJY-cRjU08lIKmIPWtihMbdarSLG2qaj-B_7H_yXXsZG2Z-HhAqqI2iW7U3tN7rn3tcxF6k2gVM60lEUDHBBjCkEQaRXJgUyk5L7hpu5YMxWgkx-Pk62Bw3e2FWc1EWcr1Oqn-q6vhHDjbbp39B3f3RuEEvAenwxHcDse_cvymzEjmFgx-r6etGgCMfQuvTdQuLzyp582Vnq7JebaagilbrsnttsarPpG0ep2VFXWt7KPaio7rqNJ-0JdOKdxN514ANPK5bkUpOomoLvEdNa40NDu2eW1WH9v-IjBS95vrNsroN1PZTcsPdrmip1c_OxFEO7MTf46Bjodc8LVqoVbxcDM6u_3TWyj0oTa6lQG8ouwseweZyC0i26Mvk7Nvw-EkPR2n21cdqQNGmYxpFLytLoltTmaL-L5Tyx20zwRPIHjufzwHKz3lxzwJO2Vjyt53T_-F39ukJX2IHvjRBv7gUPIIDXT5GN3_3Ev1Lp6gHx1e8NzgDPd4wdt4wYAXvIsXvI0Xa6HDC_Z4wZt4wR1esPU63sXLU5SenaYnn4hv0EGqIAyWJNMS0hlFeVEolgkd0hyy0zArVE5DyQxTXMaKByZh8FJSKqoTGNCGxjAR0_AZ2ivhKzxHuDA0pkIFcS4g3zRCRjmHO7kxBdecmQN01P2SE_9fW0yCOKbASDQMD9Dr_jKER1vzyko9b-w9EQOfCR69-L2JQ3TvBr9HaG9ZN_olupuvltNF_co7_CcciJY_
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+a+multigrid+preconditioner+for+Crouzeix-Raviart+discretization+of+elliptic+partial+differential+equation+with+jumpcoefficients&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Zhu%2C+Yunrong&rft.date=2014-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1506&rft.volume=21&rft.issue=1&rft.spage=24&rft_id=info:doi/10.1002%2Fnla.1856&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3612286041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon