An Error Estimator for the Finite Element Approximation of Plane and Cylindrical AcousticWaves

This paper deals with a Finite Element Method (FEM) for the approximation of the Helmholtz equation for two dimensional problems. The acoustic boundary conditions are weakly posed and an auxiliary problem with homogeneous boundary conditions is defined. This auxiliary approach allows for the formula...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer modeling in engineering & sciences Ročník 106; číslo 2; s. 127 - 145
Hlavní autoři: Sebold, J E, Lacerda, L A, Carrer, J A M
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 01.01.2015
Témata:
ISSN:1526-1492, 1526-1506
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with a Finite Element Method (FEM) for the approximation of the Helmholtz equation for two dimensional problems. The acoustic boundary conditions are weakly posed and an auxiliary problem with homogeneous boundary conditions is defined. This auxiliary approach allows for the formulation of a general solution method. Second order finite elements are used along with a discretization parameter based on the fixed wave vector and the imposed error tolerance. An explicit formula is defined for the mesh size control parameter based on Padé approximant. A parametric analysis is conducted to validate the rectangular finite element approach and the mesh control parameter. The results of the examples show that the discrete dispersion relation (DDR) can be used for the rectangular finite element mesh refinement under predefined error tolerances. It is also shown that the numerical formulation is robust and can be extended to higher order finite element analyses.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1526-1492
1526-1506
DOI:10.3970/cmes.2015.106.127