Akbari–Ganji's Method
Modeling of nonlinear differential equations analytically is rather more difficult compared to solving linear differential equations. In this regard, the Akbari‐lGanji's method (AGM) may be considered as a powerful algebraic (semi‐analytic) approach for solving such problems. In the AGM, initia...
Uloženo v:
| Vydáno v: | Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 103 - 110 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Kapitola |
| Jazyk: | angličtina |
| Vydáno: |
United States
John Wiley & Sons, Incorporated
2019
John Wiley & Sons, Inc |
| Témata: | |
| ISBN: | 9781119423423, 1119423422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Modeling of nonlinear differential equations analytically is rather more difficult compared to solving linear differential equations. In this regard, the Akbari‐lGanji's method (AGM) may be considered as a powerful algebraic (semi‐analytic) approach for solving such problems. In the AGM, initially a solution function consisting of unknown constant coefficients is assumed satisfying the differential equation and the initial conditions (IC). Then, the unknown coefficients are computed using algebraic equations obtained with respect to IC and their derivatives. This chapter illustrates the basic notion of nonlinear differential equation and its solution procedure. It presents the detailed illustration of the AGM approach for solving second‐order unforced and forced nonlinear ordinary differential equations. The chapter also illustrates the efficiency of the procedure using unforced and forced nonlinear differential equations with respect to Helmholtz and Duffing equations, respectively. |
|---|---|
| AbstractList | Modeling of nonlinear differential equations analytically is rather more difficult compared to solving linear differential equations. In this regard, the Akbari‐lGanji's method (AGM) may be considered as a powerful algebraic (semi‐analytic) approach for solving such problems. In the AGM, initially a solution function consisting of unknown constant coefficients is assumed satisfying the differential equation and the initial conditions (IC). Then, the unknown coefficients are computed using algebraic equations obtained with respect to IC and their derivatives. This chapter illustrates the basic notion of nonlinear differential equation and its solution procedure. It presents the detailed illustration of the AGM approach for solving second‐order unforced and forced nonlinear ordinary differential equations. The chapter also illustrates the efficiency of the procedure using unforced and forced nonlinear differential equations with respect to Helmholtz and Duffing equations, respectively. |
| Author | Karunakar, Perumandla Dilleswar Rao, Tharasi Mahato, Nisha Chakraverty, Snehashish |
| Author_xml | – sequence: 1 fullname: Dilleswar Rao, Tharasi – sequence: 2 fullname: Mahato, Nisha – sequence: 3 fullname: Karunakar, Perumandla – sequence: 4 fullname: Chakraverty, Snehashish |
| BookMark | eNptj8tKA0EQRVt8oIlZizt3rka7qnv6sQxBoxBxo-umX0MmCTPj9Ijoyn_wD_0SJ0bBgIuioOrcC2dA9qq6ioScAr0ASvFSSwUAmiPjAi78XO-Qwe-B610y-gMgO-ifVFOJikp2SEYpLWjfAjkqwY7IyXjpbFt-vn9MbbUoz9PZXezmdTgm-4VdpTj62UPyeH31MLnJZvfT28l4ljWAvMh8DlaBoMIVoEFH9BiUo9Ry5wspiigd5sIFjzxqEYCxXLIYkEmngpSMDQlsel_KVXw10dX1MhmgZq1qtlRNr7qePpP9k9lm38rmm29C0fNswzdt_fQcU7eJ-Fh1rV35uW262CaTSw6I3ChhAIF9AYZSZcQ |
| ContentType | Book Chapter |
| Copyright | 2019 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Inc. |
| DBID | FFUUA |
| DOI | 10.1002/9781119423461.ch9 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 1119423449 9781119423447 9781119423461 1119423465 |
| EndPage | 110 |
| ExternalDocumentID | 10.1002/9781119423461.ch9 EBC5741224_86_121 |
| Genre | chapter |
| GroupedDBID | 38. 3XM AABBV ABARN ABAZT ABBFG ABQPQ ACGYG ACLGV ACNUM ADVEM AENVZ AERYV AFOJC AFPKT AHWGJ AJFER AKQZE ALMA_UNASSIGNED_HOLDINGS AUUOE AZZ BBABE BEFXN BFFAM BGNUA BKEBE BPEOZ CZZ ECNEQ ERSLE FFUUA GEOUK GQOVZ IETMW IVUIE JFSCD KKBTI LQKAK LWYJN LYPXV MRDEW OCL OHILO OODEK W1A WIIVT YPLAZ ZEEST |
| ID | FETCH-LOGICAL-p124f-c51a81606bf1919e2c2d8b00a4bcf76fe7b256bdc24e96d133573ed237b8d7733 |
| ISBN | 9781119423423 1119423422 |
| IngestDate | Wed Nov 27 04:58:36 EST 2019 Sat Nov 15 22:28:24 EST 2025 Tue Oct 21 07:34:01 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum | QA371 .C435 2019 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p124f-c51a81606bf1919e2c2d8b00a4bcf76fe7b256bdc24e96d133573ed237b8d7733 |
| OCLC | 1090728073 |
| PQID | EBC5741224_86_121 |
| PageCount | 8 |
| ParticipantIDs | wiley_ebooks_10_1002_9781119423461_ch9_ch9 proquest_ebookcentralchapters_5741224_86_121 |
| PublicationCentury | 2000 |
| PublicationDate | 2019 2019-04-30 |
| PublicationDateYYYYMMDD | 2019-01-01 2019-04-30 |
| PublicationDate_xml | – year: 2019 text: 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken, NJ, USA |
| PublicationTitle | Advanced Numerical and Semi-Analytical Methods for Differential Equations |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Incorporated John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Incorporated – name: John Wiley & Sons, Inc |
| References | Sheikholeslami, Ganji (c09-cit-0004) 2018 Hermann, Seravi (c09-cit-0002) 2016 Akbari, Ganji, Nimafar, Ahmadi (c09-cit-0003) 2014; 9 Momani, Erjaee, Alnasr (c09-cit-0007) 2009; 58 Fucik, Kufner (c09-cit-0001) 2014; 2 Ganji, Talarposhti (c09-cit-0006) 2017 Akbari (c09-cit-0005) 2015 Yusufoğlu (c09-cit-0008) 2006; 177 |
| References_xml | – year: 2016 ident: c09-cit-0002 article-title: Nonlinear Ordinary Differential Equations – volume: 58 start-page: 2209 issue: 11–12 year: 2009 end-page: 2220 ident: c09-cit-0007 article-title: The modified homotopy perturbation method for solving strongly nonlinear oscillators publication-title: Computers and Mathematics with Applications – volume: 177 start-page: 572 issue: 2 year: 2006 end-page: 580 ident: c09-cit-0008 article-title: Numerical solution of Duffing equation by the Laplace decomposition algorithm publication-title: Applied Mathematics and Computation – year: 2015 ident: c09-cit-0005 article-title: Nonlinear Dynamic in Engineering by Akbari‐Ganji's Method – volume: 2 year: 2014 ident: c09-cit-0001 article-title: Nonlinear Differential Equations – year: 2017 ident: c09-cit-0006 article-title: Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer – volume: 9 start-page: 390 issue: 4 year: 2014 end-page: 401 ident: c09-cit-0003 article-title: Significant progress in solution of nonlinear equations at displacement of structure and heat transfer extended surface by new AGM approach publication-title: Frontiers of Mechanical Engineering – year: 2018 ident: c09-cit-0004 article-title: Applications of Semi‐Analytical Methods for Nanofluid Flow and Heat Transfer |
| SSID | ssj0002152863 ssib050313482 |
| Score | 1.5612608 |
| Snippet | Modeling of nonlinear differential equations analytically is rather more difficult compared to solving linear differential equations. In this regard, the... |
| SourceID | wiley proquest |
| SourceType | Enrichment Source Publisher |
| StartPage | 103 |
| SubjectTerms | Akbari‐Ganji's method Duffing equations Helmholtz equations nonlinear ordinary differential equations semi‐analytic approach |
| Title | Akbari–Ganji's Method |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=121&c=UERG https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6lhQPlwj_hTzlQkABD7XXs3SOUtEiloYIW9Wbtetey2-K6dlIqTrwDD8C78STM7tiO3XLpgUOsyBpF45nNeP6-GUKeJhDciLGmDriq2vETRh2pme_EYxkkXCo_tvDorx_D6ZTt7_OdweB3g4U5PQrznJ2d8eK_qhrugbINdPYS6m5_FG7Ad1A6XEHtcD3nEfdzr9hz3JT0p3MsxeAkgC_6W-bY-SOYut62e6PtKAYwergiZWZy55OTeSeFZxxcgxWsvovy5WdxjB1FohRVtshkp8JuYoIzVaWtjd8S5TwXh9i9vaNLUypQR4uuINtMYFZBY6tZrlOz1KlKuyf47aGEQL7pxqCbIj_IbHkBue_mKwxEqpev-EdDUG0N68nNLaYLQ1ywxRxcPh9RyRcMPg6Q7dAF7us45Yu3W1PRdxGIfW649uTd-hh8KvBjIhZEQLNKN4oTxywlM8X7VfoeD8gSWQpDMKNXNief9rbaJJ5ZCswCajdQ1Wx69Ryxlu2mlL7mvbnAZi-s6QZH1rvZvUGuG8TLyEBRgOubZKDzW2Rlux3oW90m91AZf37-smp4Xo1QCXfI3sZkd_2DU-_UcArw5BL4D7qCuRC1ygQida692FMMTK_wZZyEQaJDCU6wVLHnax4ol9JxSLXyaCiZAhHQu2Q5P871fTKCSDiWnAkDnYY3QcIDsSZCJqlQ0hVSDcmr5uEiW_mv241jfJoq6kt-SF5YASBtFeE8bS_qCS0CoZnPkDzrEfeJfmSFJSxU8uByTDwk1xZn9hFZnpVz_ZhcjU9nWVU-qdX_F5cCgBs |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi-Analytical+Methods+for+Differential+Equations&rft.au=Dilleswar+Rao%2C+Tharasi&rft.au=Mahato%2C+Nisha&rft.au=Karunakar%2C+Perumandla&rft.au=Chakraverty%2C+Snehashish&rft.atitle=Akbari%E2%80%93Ganji%27s+Method&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Incorporated&rft.isbn=9781119423423&rft_id=info:doi/10.1002%2F9781119423461.ch9&rft.externalDBID=121&rft.externalDocID=EBC5741224_86_121 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg |

