Akbari–Ganji's Method

Modeling of nonlinear differential equations analytically is rather more difficult compared to solving linear differential equations. In this regard, the Akbari‐lGanji's method (AGM) may be considered as a powerful algebraic (semi‐analytic) approach for solving such problems. In the AGM, initia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced Numerical and Semi-Analytical Methods for Differential Equations s. 103 - 110
Hlavní autoři: Dilleswar Rao, Tharasi, Mahato, Nisha, Karunakar, Perumandla, Chakraverty, Snehashish
Médium: Kapitola
Jazyk:angličtina
Vydáno: United States John Wiley & Sons, Incorporated 2019
John Wiley & Sons, Inc
Témata:
ISBN:9781119423423, 1119423422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Modeling of nonlinear differential equations analytically is rather more difficult compared to solving linear differential equations. In this regard, the Akbari‐lGanji's method (AGM) may be considered as a powerful algebraic (semi‐analytic) approach for solving such problems. In the AGM, initially a solution function consisting of unknown constant coefficients is assumed satisfying the differential equation and the initial conditions (IC). Then, the unknown coefficients are computed using algebraic equations obtained with respect to IC and their derivatives. This chapter illustrates the basic notion of nonlinear differential equation and its solution procedure. It presents the detailed illustration of the AGM approach for solving second‐order unforced and forced nonlinear ordinary differential equations. The chapter also illustrates the efficiency of the procedure using unforced and forced nonlinear differential equations with respect to Helmholtz and Duffing equations, respectively.
AbstractList Modeling of nonlinear differential equations analytically is rather more difficult compared to solving linear differential equations. In this regard, the Akbari‐lGanji's method (AGM) may be considered as a powerful algebraic (semi‐analytic) approach for solving such problems. In the AGM, initially a solution function consisting of unknown constant coefficients is assumed satisfying the differential equation and the initial conditions (IC). Then, the unknown coefficients are computed using algebraic equations obtained with respect to IC and their derivatives. This chapter illustrates the basic notion of nonlinear differential equation and its solution procedure. It presents the detailed illustration of the AGM approach for solving second‐order unforced and forced nonlinear ordinary differential equations. The chapter also illustrates the efficiency of the procedure using unforced and forced nonlinear differential equations with respect to Helmholtz and Duffing equations, respectively.
Author Karunakar, Perumandla
Dilleswar Rao, Tharasi
Mahato, Nisha
Chakraverty, Snehashish
Author_xml – sequence: 1
  fullname: Dilleswar Rao, Tharasi
– sequence: 2
  fullname: Mahato, Nisha
– sequence: 3
  fullname: Karunakar, Perumandla
– sequence: 4
  fullname: Chakraverty, Snehashish
BookMark eNptj8tKA0EQRVt8oIlZizt3rka7qnv6sQxBoxBxo-umX0MmCTPj9Ijoyn_wD_0SJ0bBgIuioOrcC2dA9qq6ioScAr0ASvFSSwUAmiPjAi78XO-Qwe-B610y-gMgO-ifVFOJikp2SEYpLWjfAjkqwY7IyXjpbFt-vn9MbbUoz9PZXezmdTgm-4VdpTj62UPyeH31MLnJZvfT28l4ljWAvMh8DlaBoMIVoEFH9BiUo9Ry5wspiigd5sIFjzxqEYCxXLIYkEmngpSMDQlsel_KVXw10dX1MhmgZq1qtlRNr7qePpP9k9lm38rmm29C0fNswzdt_fQcU7eJ-Fh1rV35uW262CaTSw6I3ChhAIF9AYZSZcQ
ContentType Book Chapter
Copyright 2019 John Wiley & Sons, Inc.
Copyright_xml – notice: 2019 John Wiley & Sons, Inc.
DBID FFUUA
DOI 10.1002/9781119423461.ch9
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1119423449
9781119423447
9781119423461
1119423465
EndPage 110
ExternalDocumentID 10.1002/9781119423461.ch9
EBC5741224_86_121
Genre chapter
GroupedDBID 38.
3XM
AABBV
ABARN
ABAZT
ABBFG
ABQPQ
ACGYG
ACLGV
ACNUM
ADVEM
AENVZ
AERYV
AFOJC
AFPKT
AHWGJ
AJFER
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AUUOE
AZZ
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CZZ
ECNEQ
ERSLE
FFUUA
GEOUK
GQOVZ
IETMW
IVUIE
JFSCD
KKBTI
LQKAK
LWYJN
LYPXV
MRDEW
OCL
OHILO
OODEK
W1A
WIIVT
YPLAZ
ZEEST
ID FETCH-LOGICAL-p124f-c51a81606bf1919e2c2d8b00a4bcf76fe7b256bdc24e96d133573ed237b8d7733
ISBN 9781119423423
1119423422
IngestDate Wed Nov 27 04:58:36 EST 2019
Sat Nov 15 22:28:24 EST 2025
Tue Oct 21 07:34:01 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA371 .C435 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p124f-c51a81606bf1919e2c2d8b00a4bcf76fe7b256bdc24e96d133573ed237b8d7733
OCLC 1090728073
PQID EBC5741224_86_121
PageCount 8
ParticipantIDs wiley_ebooks_10_1002_9781119423461_ch9_ch9
proquest_ebookcentralchapters_5741224_86_121
PublicationCentury 2000
PublicationDate 2019
2019-04-30
PublicationDateYYYYMMDD 2019-01-01
2019-04-30
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken, NJ, USA
PublicationTitle Advanced Numerical and Semi-Analytical Methods for Differential Equations
PublicationYear 2019
Publisher John Wiley & Sons, Incorporated
John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Incorporated
– name: John Wiley & Sons, Inc
References Sheikholeslami, Ganji (c09-cit-0004) 2018
Hermann, Seravi (c09-cit-0002) 2016
Akbari, Ganji, Nimafar, Ahmadi (c09-cit-0003) 2014; 9
Momani, Erjaee, Alnasr (c09-cit-0007) 2009; 58
Fucik, Kufner (c09-cit-0001) 2014; 2
Ganji, Talarposhti (c09-cit-0006) 2017
Akbari (c09-cit-0005) 2015
Yusufoğlu (c09-cit-0008) 2006; 177
References_xml – year: 2016
  ident: c09-cit-0002
  article-title: Nonlinear Ordinary Differential Equations
– volume: 58
  start-page: 2209
  issue: 11–12
  year: 2009
  end-page: 2220
  ident: c09-cit-0007
  article-title: The modified homotopy perturbation method for solving strongly nonlinear oscillators
  publication-title: Computers and Mathematics with Applications
– volume: 177
  start-page: 572
  issue: 2
  year: 2006
  end-page: 580
  ident: c09-cit-0008
  article-title: Numerical solution of Duffing equation by the Laplace decomposition algorithm
  publication-title: Applied Mathematics and Computation
– year: 2015
  ident: c09-cit-0005
  article-title: Nonlinear Dynamic in Engineering by Akbari‐Ganji's Method
– volume: 2
  year: 2014
  ident: c09-cit-0001
  article-title: Nonlinear Differential Equations
– year: 2017
  ident: c09-cit-0006
  article-title: Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer
– volume: 9
  start-page: 390
  issue: 4
  year: 2014
  end-page: 401
  ident: c09-cit-0003
  article-title: Significant progress in solution of nonlinear equations at displacement of structure and heat transfer extended surface by new AGM approach
  publication-title: Frontiers of Mechanical Engineering
– year: 2018
  ident: c09-cit-0004
  article-title: Applications of Semi‐Analytical Methods for Nanofluid Flow and Heat Transfer
SSID ssj0002152863
ssib050313482
Score 1.5612608
Snippet Modeling of nonlinear differential equations analytically is rather more difficult compared to solving linear differential equations. In this regard, the...
SourceID wiley
proquest
SourceType Enrichment Source
Publisher
StartPage 103
SubjectTerms Akbari‐Ganji's method
Duffing equations
Helmholtz equations
nonlinear ordinary differential equations
semi‐analytic approach
Title Akbari–Ganji's Method
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5741224&ppg=121&c=UERG
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119423461.ch9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6lhQPlwj_hTzlQkABD7XXs3SOUtEiloYIW9Wbtetey2-K6dlIqTrwDD8C78STM7tiO3XLpgUOsyBpF45nNeP6-GUKeJhDciLGmDriq2vETRh2pme_EYxkkXCo_tvDorx_D6ZTt7_OdweB3g4U5PQrznJ2d8eK_qhrugbINdPYS6m5_FG7Ad1A6XEHtcD3nEfdzr9hz3JT0p3MsxeAkgC_6W-bY-SOYut62e6PtKAYwergiZWZy55OTeSeFZxxcgxWsvovy5WdxjB1FohRVtshkp8JuYoIzVaWtjd8S5TwXh9i9vaNLUypQR4uuINtMYFZBY6tZrlOz1KlKuyf47aGEQL7pxqCbIj_IbHkBue_mKwxEqpev-EdDUG0N68nNLaYLQ1ywxRxcPh9RyRcMPg6Q7dAF7us45Yu3W1PRdxGIfW649uTd-hh8KvBjIhZEQLNKN4oTxywlM8X7VfoeD8gSWQpDMKNXNief9rbaJJ5ZCswCajdQ1Wx69Ryxlu2mlL7mvbnAZi-s6QZH1rvZvUGuG8TLyEBRgOubZKDzW2Rlux3oW90m91AZf37-smp4Xo1QCXfI3sZkd_2DU-_UcArw5BL4D7qCuRC1ygQida692FMMTK_wZZyEQaJDCU6wVLHnax4ol9JxSLXyaCiZAhHQu2Q5P871fTKCSDiWnAkDnYY3QcIDsSZCJqlQ0hVSDcmr5uEiW_mv241jfJoq6kt-SF5YASBtFeE8bS_qCS0CoZnPkDzrEfeJfmSFJSxU8uByTDwk1xZn9hFZnpVz_ZhcjU9nWVU-qdX_F5cCgBs
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Numerical+and+Semi-Analytical+Methods+for+Differential+Equations&rft.au=Dilleswar+Rao%2C+Tharasi&rft.au=Mahato%2C+Nisha&rft.au=Karunakar%2C+Perumandla&rft.au=Chakraverty%2C+Snehashish&rft.atitle=Akbari%E2%80%93Ganji%27s+Method&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Incorporated&rft.isbn=9781119423423&rft_id=info:doi/10.1002%2F9781119423461.ch9&rft.externalDBID=121&rft.externalDocID=EBC5741224_86_121
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5741224-l.jpg