Sparse Representation for Prediction of HIV-1 Protease Drug Resistance

HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... SIAM International Conference on Data Mining Jg. 2013; S. 342
Hauptverfasser: Yu, Xiaxia, Weber, Irene T, Harrison, Robert W
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 2013
Schlagworte:
ISSN:2167-0102
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×10 known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy.
AbstractList HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×10 known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy.
HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×104 known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy.HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to individual drugs from sequence data has important benefits for both the therapy of individual patients and the development of novel drugs. We have developed an accurate classification method based on the sparse representation theory, and demonstrate that this method is highly effective with HIV-1 protease. The protease structure is represented using our newly proposed encoding method based on Delaunay triangulation, and combined with the mutated amino acid sequences of known drug-resistant strains to train a machine-learning algorithm both for classification and regression of drug-resistant mutations. An overall cross-validated classification accuracy of 97% is obtained when trained on a publically available data base of approximately 1.5×104 known sequences (Stanford HIV database http://hivdb.stanford.edu/cgi-bin/GenoPhenoDS.cgi). Resistance to four FDA approved drugs is computed and comparisons with other algorithms demonstrate that our method shows significant improvements in classification accuracy.
Author Harrison, Robert W
Yu, Xiaxia
Weber, Irene T
Author_xml – sequence: 1
  givenname: Xiaxia
  surname: Yu
  fullname: Yu, Xiaxia
  organization: Department of Computer Science, Georgia State University
– sequence: 2
  givenname: Irene T
  surname: Weber
  fullname: Weber, Irene T
  organization: Department of Biology, Georgia State University
– sequence: 3
  givenname: Robert W
  surname: Harrison
  fullname: Harrison, Robert W
  organization: Department of Computer Science, Georgia State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24910813$$D View this record in MEDLINE/PubMed
BookMark eNo1j81OwzAQhH0ooqX0BTigHLmkeDdxbB9RobRSJRB_18iJNyiojYOdHHj7WlBOM7P6ZqW5YJPOdcTYFfAlQCZvYamlggJAS1QZLjM1YTOEQqYcOE7ZIoQvzqMXMkd-zqaYa-AKshlbv_bGB0peqPcUqBvM0LouaZxPnj3Ztv6Nrkk2248U4s0NZCJ_78fPWAptGExX0yU7a8w-0OKkc_a-fnhbbdLd0-N2dbdLewDIU5ELEqrRFhpCXiurpBSVMrVtDGpCAiBb1EJpKTMjwdhoKpFnvJIiJ41zdvP3t_fue6QwlIc21LTfm47cGEpQWIjYKTCi1yd0rA5ky963B-N_yv_teAQOUFrt
ContentType Journal Article
DBID NPM
7X8
DOI 10.1137/1.9781611972832.38
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 24910813
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM062920
– fundername: NIGMS NIH HHS
  grantid: U01 GM062920
GroupedDBID 7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
ABJCF
ABUWG
ACGOD
ACIWK
ACPRK
ADBBV
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CZ9
D1I
D1J
D1K
DWQXO
FRNLG
GNUQQ
GUQSH
HCIFZ
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
NPM
P62
PATMY
PDBOC
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
7X8
ID FETCH-LOGICAL-p1114-545e58f9d1fe20c8d8775b8acdfa29e2e11ed6c589773a71ad977b5430b754e92
IEDL.DBID 7X8
ISSN 2167-0102
IngestDate Fri Jul 11 00:52:04 EDT 2025
Thu Apr 03 07:10:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Drug resistance prediction
HIV protease
Sparse Representation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1114-545e58f9d1fe20c8d8775b8acdfa29e2e11ed6c589773a71ad977b5430b754e92
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24910813
PQID 1826597762
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1826597762
pubmed_primary_24910813
PublicationCentury 2000
PublicationDate 2013-00-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the ... SIAM International Conference on Data Mining
PublicationTitleAlternate Proc SIAM Int Conf Data Min
PublicationYear 2013
References 10722492 - Antimicrob Agents Chemother. 2000 Apr;44(4):920-8
18549313 - Clin Infect Dis. 2008 Jul 15;47(2):266-85
3052448 - Biochem Biophys Res Commun. 1988 Oct 14;156(1):297-303
22242794 - Biochemistry. 2012 Feb 7;51(5):1041-50
7816094 - Nature. 1995 Jan 12;373(6510):123-6
22286877 - Intervirology. 2012;55(2):102-7
2183354 - Science. 1990 Apr 20;248(4953):358-61
2479031 - Proc Natl Acad Sci U S A. 1989 Nov;86(22):8964-7
12212924 - Antivir Ther. 2002 Jun;7(2):123-9
17243183 - Proteins. 2007 Apr 1;67(1):232-42
1370910 - Biochemistry. 1992 Feb 4;31(4):954-8
19474477 - Antivir Ther. 2009;14(3):433-42
10868275 - Biotechniques. 2000 Jun;28(6):1102, 1104
11013762 - Adv Pharmacol. 2000;49:111-46
21994585 - Viruses. 2009 Dec;1(3):1110-36
17065321 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17355-60
12520007 - Nucleic Acids Res. 2003 Jan 1;31(1):298-303
11964529 - AIDS. 2002 Mar 29;16(5):727-36
References_xml – reference: 3052448 - Biochem Biophys Res Commun. 1988 Oct 14;156(1):297-303
– reference: 17065321 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17355-60
– reference: 10722492 - Antimicrob Agents Chemother. 2000 Apr;44(4):920-8
– reference: 11964529 - AIDS. 2002 Mar 29;16(5):727-36
– reference: 17243183 - Proteins. 2007 Apr 1;67(1):232-42
– reference: 22286877 - Intervirology. 2012;55(2):102-7
– reference: 10868275 - Biotechniques. 2000 Jun;28(6):1102, 1104
– reference: 12212924 - Antivir Ther. 2002 Jun;7(2):123-9
– reference: 19474477 - Antivir Ther. 2009;14(3):433-42
– reference: 22242794 - Biochemistry. 2012 Feb 7;51(5):1041-50
– reference: 2183354 - Science. 1990 Apr 20;248(4953):358-61
– reference: 21994585 - Viruses. 2009 Dec;1(3):1110-36
– reference: 1370910 - Biochemistry. 1992 Feb 4;31(4):954-8
– reference: 2479031 - Proc Natl Acad Sci U S A. 1989 Nov;86(22):8964-7
– reference: 12520007 - Nucleic Acids Res. 2003 Jan 1;31(1):298-303
– reference: 11013762 - Adv Pharmacol. 2000;49:111-46
– reference: 7816094 - Nature. 1995 Jan 12;373(6510):123-6
– reference: 18549313 - Clin Infect Dis. 2008 Jul 15;47(2):266-85
SSID ssj0001057420
Score 1.4996175
Snippet HIV rapidly evolves drug resistance in response to antiviral drugs used in AIDS therapy. Estimating the specific resistance of a given strain of HIV to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 342
Title Sparse Representation for Prediction of HIV-1 Protease Drug Resistance
URI https://www.ncbi.nlm.nih.gov/pubmed/24910813
https://www.proquest.com/docview/1826597762
Volume 2013
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrBQ3pSXjMTqljgP2xNCQFUGqoqXukVObCOWJDQtv587N1EnJCSWKI7kKDnd4_OdfR8hVzx2EgM3EyFXDHMMTGaKMwiGVihpMhh5sgkxHsvpVE2ahFvdbKtsfaJ31KbMMUc-QByMvdISflN9MWSNwupqQ6GxTjohQBk0TDGVqxwLgJHId2bk2N4b26e152ZCMQj62O8p8cRboNf9UP6OMn20GXb_-507ZLvBmfR2qRi7ZM0We6TbcjjQxqT3yfClgqWtpc9-R2xzEKmgAGXpZIZFHD8sHR09vrMAnpVzLOjQ-9niAybVCD_hRQfkbfjwejdiDbcCq8C7RQyAk42lUyZwll_n0kgh4kzq3DjNleU2CKxJ8ljCr4RaBNrATRZH4XUm4sgqfkg2irKwx4TmNs8CKZMk07DcSrSKo8RoB7jQgX4o1yOXraRS0F0sSOjClos6XcmqR46W4k6rZZONFJaFAcCV8OQPs0_JFvcsFZgZOSMdB5Zrz8lm_j3_rGcXXingOp48_QBkor6o
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Representation+for+Prediction+of+HIV-1+Protease+Drug+Resistance&rft.jtitle=Proceedings+of+the+...+SIAM+International+Conference+on+Data+Mining&rft.au=Yu%2C+Xiaxia&rft.au=Weber%2C+Irene+T&rft.au=Harrison%2C+Robert+W&rft.date=2013-01-01&rft.issn=2167-0102&rft.volume=2013&rft.spage=342&rft_id=info:doi/10.1137%2F1.9781611972832.38&rft_id=info%3Apmid%2F24910813&rft_id=info%3Apmid%2F24910813&rft.externalDocID=24910813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-0102&client=summon