A Detection Method for Crop Diseases and Pests Based on Improved YOLOv7

With the rapid advancement of science and technology, artificial intelligence (AI) and machine learning (ML) have been widely applied in agriculture. To tackle challenges in crop disease and pest identification-such as diverse species, subtle inter-class feature differences, and significant intra-cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IAENG international journal of computer science Jg. 52; H. 9; S. 3327
Hauptverfasser: Kang, Jie, Chen, Xiaoying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hong Kong International Association of Engineers 01.09.2025
Schlagworte:
ISSN:1819-656X, 1819-9224
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the rapid advancement of science and technology, artificial intelligence (AI) and machine learning (ML) have been widely applied in agriculture. To tackle challenges in crop disease and pest identification-such as diverse species, subtle inter-class feature differences, and significant intra-class variations across crop growth stages-an improved YOLOv7 (IP-YOLOv7) object detection algorithm integrated with a hybrid attention mechanism is proposed. By incorporating the hybrid attention module into the backbone network of YOLOv7, the algorithm enhances its capability to learn pathological features and focuses more effectively on small-scale effective feature regions of crop leaves, thereby improving the identification accuracy of YOLOv7 for various crop diseases and pests. Experimental results demonstrate that YOLOv7 achieves a mean average precision (mAP) of 95.17%, while IP-YOLOv7 reaches 97.35% in crop disease and pest detection, indicating high accuracy and robustness of IP-YOLOv7 in this task.
AbstractList With the rapid advancement of science and technology, artificial intelligence (AI) and machine learning (ML) have been widely applied in agriculture. To tackle challenges in crop disease and pest identification-such as diverse species, subtle inter-class feature differences, and significant intra-class variations across crop growth stages-an improved YOLOv7 (IP-YOLOv7) object detection algorithm integrated with a hybrid attention mechanism is proposed. By incorporating the hybrid attention module into the backbone network of YOLOv7, the algorithm enhances its capability to learn pathological features and focuses more effectively on small-scale effective feature regions of crop leaves, thereby improving the identification accuracy of YOLOv7 for various crop diseases and pests. Experimental results demonstrate that YOLOv7 achieves a mean average precision (mAP) of 95.17%, while IP-YOLOv7 reaches 97.35% in crop disease and pest detection, indicating high accuracy and robustness of IP-YOLOv7 in this task.
Author Chen, Xiaoying
Kang, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Kang
  fullname: Kang, Jie
– sequence: 2
  givenname: Xiaoying
  surname: Chen
  fullname: Chen, Xiaoying
BookMark eNotjk1LAzEYhINUsNb-h4DnhXx_HOtWa2FlPSjoqWSTN7iim3Wz7e830J7mGRhm5hYthjTAFVpSQ21lGROLCyupPm7QOue-I0JobozkS7Tb4C3M4Oc-DfgF5q8UcEwTrqc04m2fwWXI2A0Bv0KeM34oPuCS3f-OUzoV_myb9qTv0HV0PxnWF12h96fHt_q5atrdvt401UgJmSujvePOBRq0Dto4AlF0TnUyeKa8tUGKaKiWJGiwWgvvhODgnSGeMckiX6H7c29Z_zuWS4fvdJyGMnngTFhLraKE_wMEaEpv
ContentType Journal Article
Copyright Copyright International Association of Engineers 2025
Copyright_xml – notice: Copyright International Association of Engineers 2025
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1819-9224
GroupedDBID .4S
.DC
2WC
5VS
7SC
8FD
AAKPC
ADMLS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
EDO
EOJEC
I-F
JQ2
KQ8
L7M
L~C
L~D
MK~
ML~
OBODZ
OK1
OVT
P2P
TR2
TUS
ID FETCH-LOGICAL-p100t-87ca3aad1d77d78a0ef4ba6b5dc26c99d54f81750d7e9774ca443eca80c2252f3
ISSN 1819-656X
IngestDate Fri Sep 12 20:10:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p100t-87ca3aad1d77d78a0ef4ba6b5dc26c99d54f81750d7e9774ca443eca80c2252f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3249919610
PQPubID 2049582
ParticipantIDs proquest_journals_3249919610
PublicationCentury 2000
PublicationDate 20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 20250901
  day: 01
PublicationDecade 2020
PublicationPlace Hong Kong
PublicationPlace_xml – name: Hong Kong
PublicationTitle IAENG international journal of computer science
PublicationYear 2025
Publisher International Association of Engineers
Publisher_xml – name: International Association of Engineers
SSID ssib044738853
ssj0070001
Score 2.3269622
Snippet With the rapid advancement of science and technology, artificial intelligence (AI) and machine learning (ML) have been widely applied in agriculture. To tackle...
SourceID proquest
SourceType Aggregation Database
StartPage 3327
SubjectTerms Algorithms
Artificial intelligence
Crop growth
Machine learning
Object recognition
Pests
Plant diseases
Title A Detection Method for Crop Diseases and Pests Based on Improved YOLOv7
URI https://www.proquest.com/docview/3249919610
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1819-9224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044738853
  issn: 1819-656X
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ07T8MwEMctqBhYeCPe8oBYUCQTO7U9lqrlodIyFKlMleMkUpe0tKWChc_O-ZE0CAnBwBI5bpVU_Vl357N9f4TOBddRzLQOwJtGAYtJGsgsBCDgTJWKwVbGVrWkw7tdMRjIR3_2ZGblBHiei7c3OflX1NAHsM3R2T_gLh8KHdAG6HAF7HD9FfgG2JB56hTAH6w-tN1K2JyOJ6bWplmOcXWZH8EhzC6v4T4xSwYuvQDt516nt-DVqPWu0ere2MoSy-RhpeSE9soQl96dlkbc56LvR2VX0x8GGYzU-L3wmj7pEEblrio_Ef3ywspAstshfSHFSrIRwgizycZqFoLXWfbJ0J2gLmxxFFbGnKwYVkpdCYGvFbO7vWH7qdMZ9luD_sXkJTBiYmbR3SurrKJVSoygwsNHqzAyjHEqbIzi3DU3Ua6ZlRc_8ZtTtpFGfwtt-CkCbji022glzXfQZiG_gb013kU3DVySxo40BtLYkMYFaQyksSWNLWkM3y1IY0d6Dz21W_3mbeB1MYLJFSFzcGBaUaWSq4TzhAtF0ozFqh5HiQ7rWsokYpmAsJAkPDXhvVaM0VQrQTRY7zCj-6iWj_P0AOGQxGGWUVmXXLBEC6m5EpFUYNllrAg9RCfFnzH042o2hBgcZhUSAu-jnz8-RuvLwXOCavPpa3qK1vRiPppNzyyWT2poUPg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Detection+Method+for+Crop+Diseases+and+Pests+Based+on+Improved+YOLOv7&rft.jtitle=IAENG+international+journal+of+computer+science&rft.au=Kang%2C+Jie&rft.au=Chen%2C+Xiaoying&rft.date=2025-09-01&rft.pub=International+Association+of+Engineers&rft.issn=1819-656X&rft.eissn=1819-9224&rft.volume=52&rft.issue=9&rft.spage=3327&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1819-656X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1819-656X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1819-656X&client=summon