A Detection Method for Crop Diseases and Pests Based on Improved YOLOv7
With the rapid advancement of science and technology, artificial intelligence (AI) and machine learning (ML) have been widely applied in agriculture. To tackle challenges in crop disease and pest identification-such as diverse species, subtle inter-class feature differences, and significant intra-cl...
Gespeichert in:
| Veröffentlicht in: | IAENG international journal of computer science Jg. 52; H. 9; S. 3327 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hong Kong
International Association of Engineers
01.09.2025
|
| Schlagworte: | |
| ISSN: | 1819-656X, 1819-9224 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the rapid advancement of science and technology, artificial intelligence (AI) and machine learning (ML) have been widely applied in agriculture. To tackle challenges in crop disease and pest identification-such as diverse species, subtle inter-class feature differences, and significant intra-class variations across crop growth stages-an improved YOLOv7 (IP-YOLOv7) object detection algorithm integrated with a hybrid attention mechanism is proposed. By incorporating the hybrid attention module into the backbone network of YOLOv7, the algorithm enhances its capability to learn pathological features and focuses more effectively on small-scale effective feature regions of crop leaves, thereby improving the identification accuracy of YOLOv7 for various crop diseases and pests. Experimental results demonstrate that YOLOv7 achieves a mean average precision (mAP) of 95.17%, while IP-YOLOv7 reaches 97.35% in crop disease and pest detection, indicating high accuracy and robustness of IP-YOLOv7 in this task. |
|---|---|
| AbstractList | With the rapid advancement of science and technology, artificial intelligence (AI) and machine learning (ML) have been widely applied in agriculture. To tackle challenges in crop disease and pest identification-such as diverse species, subtle inter-class feature differences, and significant intra-class variations across crop growth stages-an improved YOLOv7 (IP-YOLOv7) object detection algorithm integrated with a hybrid attention mechanism is proposed. By incorporating the hybrid attention module into the backbone network of YOLOv7, the algorithm enhances its capability to learn pathological features and focuses more effectively on small-scale effective feature regions of crop leaves, thereby improving the identification accuracy of YOLOv7 for various crop diseases and pests. Experimental results demonstrate that YOLOv7 achieves a mean average precision (mAP) of 95.17%, while IP-YOLOv7 reaches 97.35% in crop disease and pest detection, indicating high accuracy and robustness of IP-YOLOv7 in this task. |
| Author | Chen, Xiaoying Kang, Jie |
| Author_xml | – sequence: 1 givenname: Jie surname: Kang fullname: Kang, Jie – sequence: 2 givenname: Xiaoying surname: Chen fullname: Chen, Xiaoying |
| BookMark | eNotjk1LAzEYhINUsNb-h4DnhXx_HOtWa2FlPSjoqWSTN7iim3Wz7e830J7mGRhm5hYthjTAFVpSQ21lGROLCyupPm7QOue-I0JobozkS7Tb4C3M4Oc-DfgF5q8UcEwTrqc04m2fwWXI2A0Bv0KeM34oPuCS3f-OUzoV_myb9qTv0HV0PxnWF12h96fHt_q5atrdvt401UgJmSujvePOBRq0Dto4AlF0TnUyeKa8tUGKaKiWJGiwWgvvhODgnSGeMckiX6H7c29Z_zuWS4fvdJyGMnngTFhLraKE_wMEaEpv |
| ContentType | Journal Article |
| Copyright | Copyright International Association of Engineers 2025 |
| Copyright_xml | – notice: Copyright International Association of Engineers 2025 |
| DBID | 7SC 8FD JQ2 L7M L~C L~D |
| DatabaseName | Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1819-9224 |
| GroupedDBID | .4S .DC 2WC 5VS 7SC 8FD AAKPC ADMLS ALMA_UNASSIGNED_HOLDINGS ARCSS EDO EOJEC I-F JQ2 KQ8 L7M L~C L~D MK~ ML~ OBODZ OK1 OVT P2P TR2 TUS |
| ID | FETCH-LOGICAL-p100t-87ca3aad1d77d78a0ef4ba6b5dc26c99d54f81750d7e9774ca443eca80c2252f3 |
| ISSN | 1819-656X |
| IngestDate | Fri Sep 12 20:10:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p100t-87ca3aad1d77d78a0ef4ba6b5dc26c99d54f81750d7e9774ca443eca80c2252f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3249919610 |
| PQPubID | 2049582 |
| ParticipantIDs | proquest_journals_3249919610 |
| PublicationCentury | 2000 |
| PublicationDate | 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 20250901 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hong Kong |
| PublicationPlace_xml | – name: Hong Kong |
| PublicationTitle | IAENG international journal of computer science |
| PublicationYear | 2025 |
| Publisher | International Association of Engineers |
| Publisher_xml | – name: International Association of Engineers |
| SSID | ssib044738853 ssj0070001 |
| Score | 2.3269622 |
| Snippet | With the rapid advancement of science and technology, artificial intelligence (AI) and machine learning (ML) have been widely applied in agriculture. To tackle... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 3327 |
| SubjectTerms | Algorithms Artificial intelligence Crop growth Machine learning Object recognition Pests Plant diseases |
| Title | A Detection Method for Crop Diseases and Pests Based on Improved YOLOv7 |
| URI | https://www.proquest.com/docview/3249919610 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1819-9224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044738853 issn: 1819-656X databaseCode: M~E dateStart: 0 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ07T8MwEMctqBhYeCPe8oBYUCQTO7U9lqrlodIyFKlMleMkUpe0tKWChc_O-ZE0CAnBwBI5bpVU_Vl357N9f4TOBddRzLQOwJtGAYtJGsgsBCDgTJWKwVbGVrWkw7tdMRjIR3_2ZGblBHiei7c3OflX1NAHsM3R2T_gLh8KHdAG6HAF7HD9FfgG2JB56hTAH6w-tN1K2JyOJ6bWplmOcXWZH8EhzC6v4T4xSwYuvQDt516nt-DVqPWu0ere2MoSy-RhpeSE9soQl96dlkbc56LvR2VX0x8GGYzU-L3wmj7pEEblrio_Ef3ywspAstshfSHFSrIRwgizycZqFoLXWfbJ0J2gLmxxFFbGnKwYVkpdCYGvFbO7vWH7qdMZ9luD_sXkJTBiYmbR3SurrKJVSoygwsNHqzAyjHEqbIzi3DU3Ua6ZlRc_8ZtTtpFGfwtt-CkCbji022glzXfQZiG_gb013kU3DVySxo40BtLYkMYFaQyksSWNLWkM3y1IY0d6Dz21W_3mbeB1MYLJFSFzcGBaUaWSq4TzhAtF0ozFqh5HiQ7rWsokYpmAsJAkPDXhvVaM0VQrQTRY7zCj-6iWj_P0AOGQxGGWUVmXXLBEC6m5EpFUYNllrAg9RCfFnzH042o2hBgcZhUSAu-jnz8-RuvLwXOCavPpa3qK1vRiPppNzyyWT2poUPg |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Detection+Method+for+Crop+Diseases+and+Pests+Based+on+Improved+YOLOv7&rft.jtitle=IAENG+international+journal+of+computer+science&rft.au=Kang%2C+Jie&rft.au=Chen%2C+Xiaoying&rft.date=2025-09-01&rft.pub=International+Association+of+Engineers&rft.issn=1819-656X&rft.eissn=1819-9224&rft.volume=52&rft.issue=9&rft.spage=3327&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1819-656X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1819-656X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1819-656X&client=summon |