High-Precision Determination of Oxygen K_{α} Transition Energy Excludes Incongruent Motion of Interstellar Oxygen

We demonstrate a widely applicable technique to absolutely calibrate the energy scale of x-ray spectra with experimentally well-known and accurately calculable transitions of highly charged ions, allowing us to measure the K-shell Rydberg spectrum of molecular O_{2} with 8 meV uncertainty. We reveal...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 125; no. 24; p. 243001
Main Authors: Leutenegger, M A, Kühn, S, Micke, P, Steinbrügge, R, Stierhof, J, Shah, C, Hell, N, Bissinger, M, Hirsch, M, Ballhausen, R, Lang, M, Gräfe, C, Wipf, S, Cumbee, R, Betancourt-Martinez, G L, Park, S, Yerokhin, V A, Surzhykov, A, Stolte, W C, Niskanen, J, Chung, M, Porter, F S, Stöhlker, T, Pfeifer, T, Wilms, J, Brown, G V, Crespo López-Urrutia, J R, Bernitt, S
Format: Journal Article
Language:English
Published: United States American Physical Society (APS) 11.12.2020
Subjects:
ISSN:1079-7114, 0031-9007, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate a widely applicable technique to absolutely calibrate the energy scale of x-ray spectra with experimentally well-known and accurately calculable transitions of highly charged ions, allowing us to measure the K-shell Rydberg spectrum of molecular O_{2} with 8 meV uncertainty. We reveal a systematic ∼450  meV shift from previous literature values, and settle an extraordinary discrepancy between astrophysical and laboratory measurements of neutral atomic oxygen, the latter being calibrated against the aforementioned O_{2} literature values. Because of the widespread use of such, now deprecated, references, our method impacts on many branches of x-ray absorption spectroscopy. Moreover, it potentially reduces absolute uncertainties there to below the meV level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
National Aeronautics and Space Administration (NASA)
National Research Foundation of Korea (NRF)
USDOE
German Research Foundation (DFG)
AC02-05CH11231; AC52-07NA27344
Bundesministerium für Bildung und Forschung (BMBF)
Max-Planck-Gesellschaft (MPG)
LLNL-JRNL-831017
ISSN:1079-7114
0031-9007
1079-7114
DOI:10.1103/PhysRevLett.125.243001